
Theorem Proving in Lean4

Theorem Proving in Lean 4 - Theorem Proving in Lean 4 (leanprover.github.io)

Reference:

https://leanprover.github.io/theorem_proving_in_lean4/

Lean as a programming language

Define a term using following syntax:

def [identifier] [context] : [type] := ……
Use the following format to write a function:

fun x1 … xn => ……
“#check” command returns the type of expressions :

#check [expressions]
“#eval” command evaluates the expressions we defined

#eval [expressions]
“Nat -> Nat -> Nat” type is a function that takes in two
variables.
It equals to “Nat -> (Nat -> Nat)”. In the example it means
after taking in the first parameter “1”, “g 1” is a function of
type “Nat -> Nat”
“g” and “g’” behave the same.

Theorem proving in Lean

Type system in Lean is quite flexible and expressive.

In fact, each proposition is a type, and to prove a proposition is
just to construct a term of this type.

\forall \exists \< \>

“theorem” is another name
for “def”

Proposition: For all natural number a, there exists a b so that b>a+1.

This proposition is proved if we can construct a function that takes in any natural
number a and spits out a prove that “there exists a b so that b>a+1”. To prove “there
exists a b so that b>a+1”, we actually need to construct a pair <b, proof>, where b is the
number we have found and “proof” is the proof that “b > a+1”.

The goal is reduced to prove
“a+2>a+1”. I used the tactics “simp”
for simplifying. “by” keyword starts
a section of tactics.

Dependent types

In Lean dependent types are functions or pairs where the type of later variables can depend on the previous variables.

(a:Nat)->(a>0) is a proposition that for all natural number a, a>0.
(b:Nat)×(b>0) is a proposition that there exists a natural number b, such that b>0.
 (But this syntax is invalid. We write ∃b,b>0. When the type of last variable is a proposition,
 we use “∃” expressions instead.)

We can leave “_” in expressions to ask Lean to fill in this whole automatically.
“{A:Type}” in the example above asks Lean to infer “A” automatically.
<…> is the anonymous constructor.

Variable declaration and namespaces

Use the keyword “variable” to declare variables without
defining them:

variable (a1:[Type]) … (an:[Type])
This declaration is valid inside a namespace:

namespace [name]
…
end [name]

Inside a namespace, declared variables can be used
directly in definitions and proofs.
To call definitions inside a namespace, we should write:

[namespace].[identifier]
If we call a definition inside a namespace, the variables declared
inside this namespace that are used by this definition will be
automatically added to this definition as context.

Type system in Lean

[proof]

∀a:Nat,∃b,
b>a+1

Prop
(Sort 0)

Type
(Sort 1)

Type 1
(Sort 2)

Nat

123

(x:Type)->(y:Type)->(x->y)

[some term]

The type system has the hierarchy shown on the
left. “Type n” is said to have universe level n.
A dependent type (t1:Type u1)-> … ->(tn:Type un)
typically has type “Type max{u1+1, … ,un+1}”.
However, if “tn” is of type “Prop”, the whole
dependent type will be of type “Prop”.

Inductive types

All user defined types in Lean are inductive types.
We can construct inductive types using following syntax:

inductive [name] (a1:[type]) … (an:[type]) :Sort u where
 |constructor_1:->[name] a1 ... an

 |constructor_m:->[name] a1 ... an

a1, … , an should be types instead of terms, and they should be able to be inferred from the input of constructors.
The “Sort u” specification of the universe level of this inductive type should be strictly greater that the universe level
of constructors.
A constructor can construct a term of the inductive type it belongs to.
We can use “[name].constructor” to call a constructor. We can also use “[term].constructor” when the “[term]” is of
this inductive type and the constructor we are calling takes in a term of this inductive type.

((myList.c1 4).c2 6).c2 5 is the list
[4, 6, 5]

inductions

Because all user defined types in Lean are inductive types and all terms are constructed by constructors, we can
do inductions and case distinctions on (a:A) simply by looking at what constructor is used to construct the term a.

Define a case distinction using following syntax:

match [term] with
 |constructor_1 … => …
 …
 |constructor_n … => …

In the example, “moreThanOne”, “last” and “first” is
defined under the namespace “myList”, so we can
use [term].moreThanOne etc. to call these
definitions.
Recursion is used in the definition of “myList.first”.
When using recursion, Lean will check whether this
recursion can be proved to terminate.
Recursion is important in many proofs involving
natural numbers.

inductions
Example: (Not the best proof)

We can use the following syntax anywhere in our proof or
definition of define a local variables for substitutions

let [identifier]:[type]:= …
It can also be used outside tactics mode.

Structures

Structures are a variation of inductive type:

structure [name] [parameter] where
[field1]: …
[field2]: …

We can define a term of this structure using the
anonymous constructor:

[identifier]:[Type]:=
<field_1, … , field_n>
Or

{field_1:= …, …, field_n:= …
:[Type]}

Classes and instances

Classes are a variation of structures.
However, these structures are anonymous. We need to declare an instance to use methods (fields of structures)
under these classes.
Methods can be overloaded when used on different terms.
We sometimes see functions of the form “{T}->[inst]->(xxxx)-> … ->(xxxx)”. “{T}” asks Lean to infer a type “T”, and
“[inst]” asks Lean to infer an instance.

Axioms and sorry

Declare an axiom using following syntax:

axiom [identifier]:[Type]
The “sorry” tactic can fill in the proof of any proposition

Using tactics
“by” keyword starts a section of tactics.
Tactics are programs that help to construct proof terms automatically.

Some useful tactics :
have h:[type]:= a tactic version of “let”
have h:[type] declare a local goal without proving it
rw [xxx,<-xxx,…] rewrite the goal
rw [xxx,…] at h rewrite expressions or local goal h
simp simplify
simpa simplify all
simp at h
simpa using h
simp_rw used to rewrite expressions when motive is different
intro introduce a variable in the statement
\t substitution
congr reduce f a = f b to a=b
exact p finish a proof with p
by_cases discuss the two cases where a hypothesis is true or not
Refine’ xxx _ xxx _ …. refine the goal with xxx but leave some “wholes” to fill in
induction’ use induction to argue
suffice
calc do calculations in steps

Using tactics

In Mathlib:
ring use ring property to simplify
abel use abelian group property to simpify
zify convert a natural number proposition into integer proposition
push_neg push negation into a proposition
contrapose argue contrapositively
cases’ used to discuss AorB type proposition
by_contra … argue by contradiction

Recursion can also be used in tactics mode, which means we can call a theorem or definition
itself when constructing local variables or statements, as long as Lean can figure out the
proof that this recursion can terminate.

	Slide 1: Theorem Proving in Lean4
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

