JAN REIMANN, PENN STATE MATH, UNIVERSITY PARK
PARTTERNS

Not: Why are there patterns?

But: How can we see them? (and how does math help us with this?)

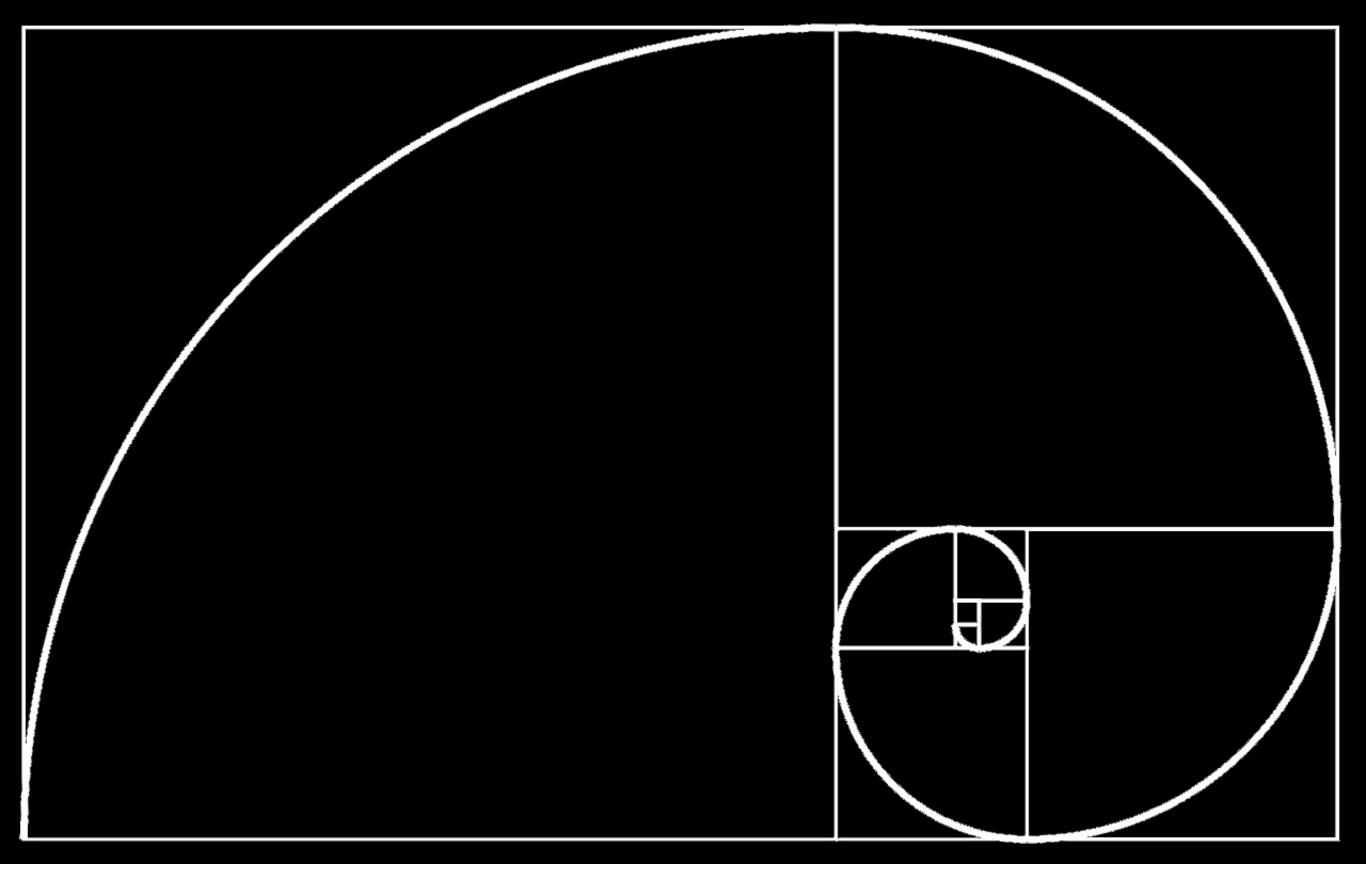
Alluvial Fan, China (Photo: NASA)

Patterns exist only where we know how to see them

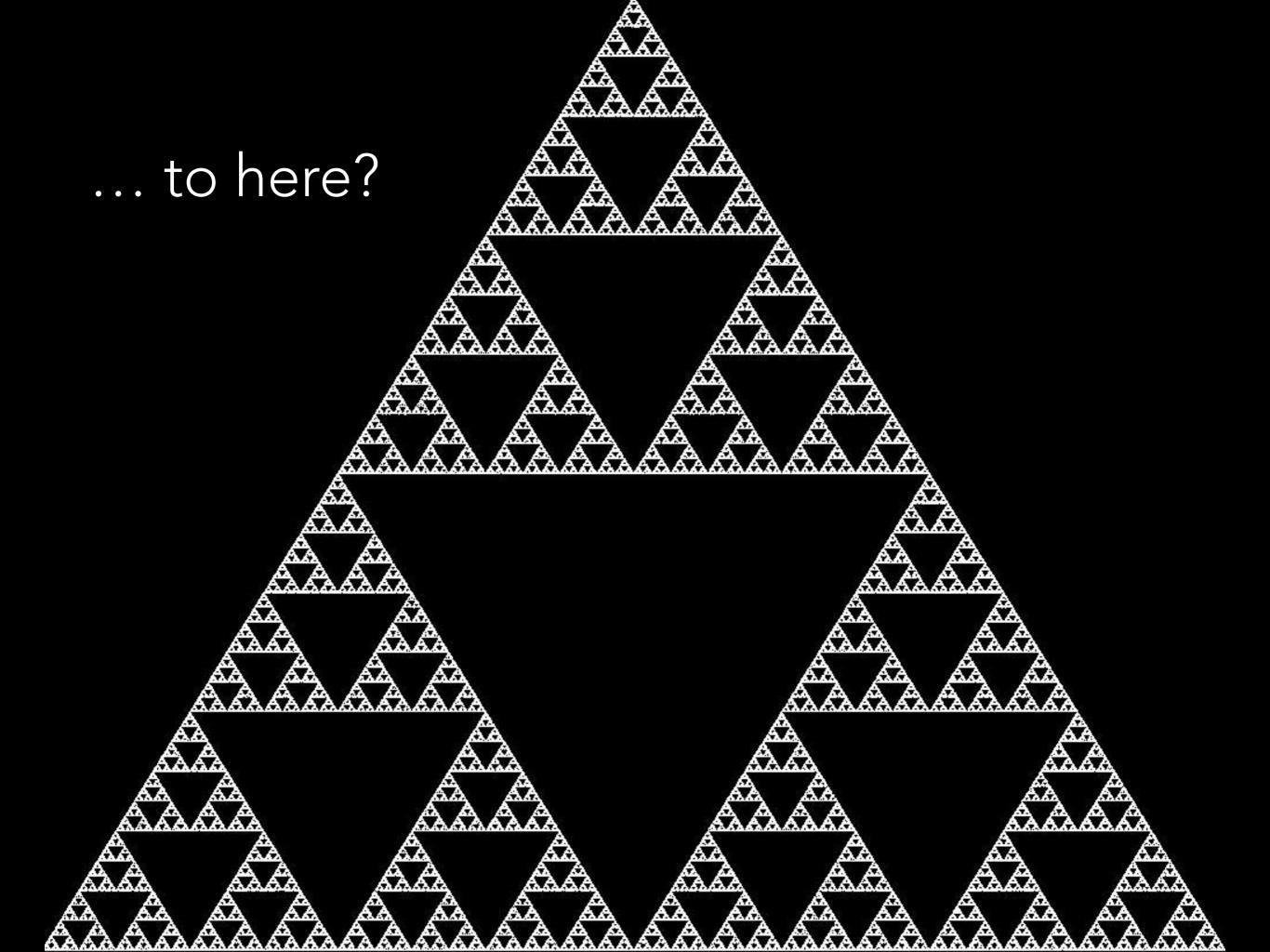
Curiosity (and scientific endeavor) teaches us to see them

-limmalayas (Photo: N

How do you get from here...



And from here...



3000 years of mathematics...

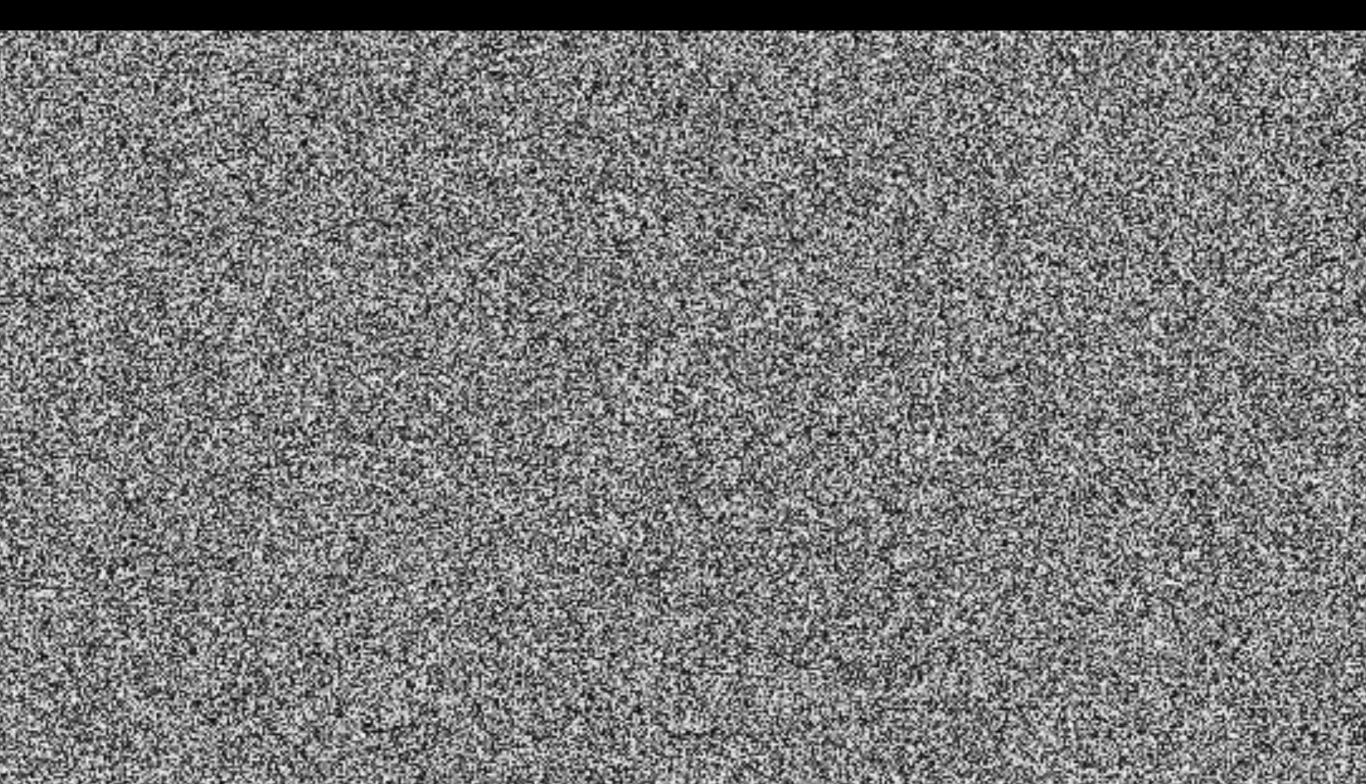
... and the human struggle with it

CHAOS

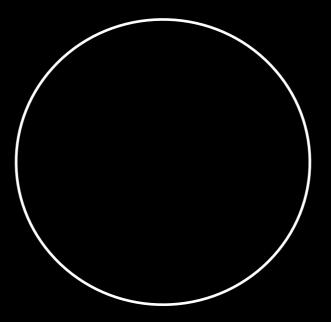
Ovid, Metamorphoses (8 AD):

"Before there was earth or sea or the sky that covers everything, Nature appeared the same throughout the whole world: what we call chaos: a raw confused mass, nothing but inert matter, badly combined discordant atoms of things, confused in the one place."

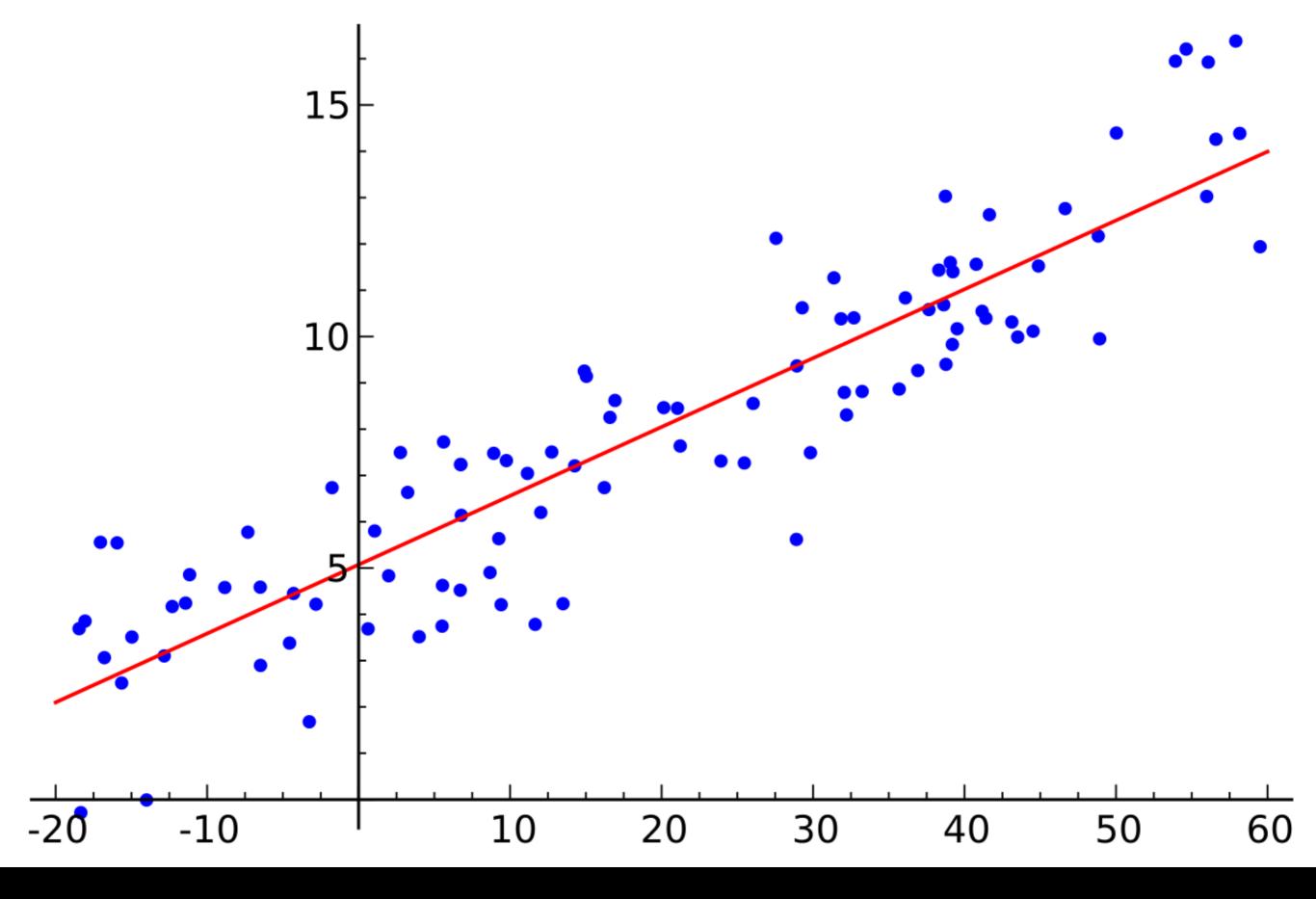
Today we would probably call that random noise



The fundamental patterns

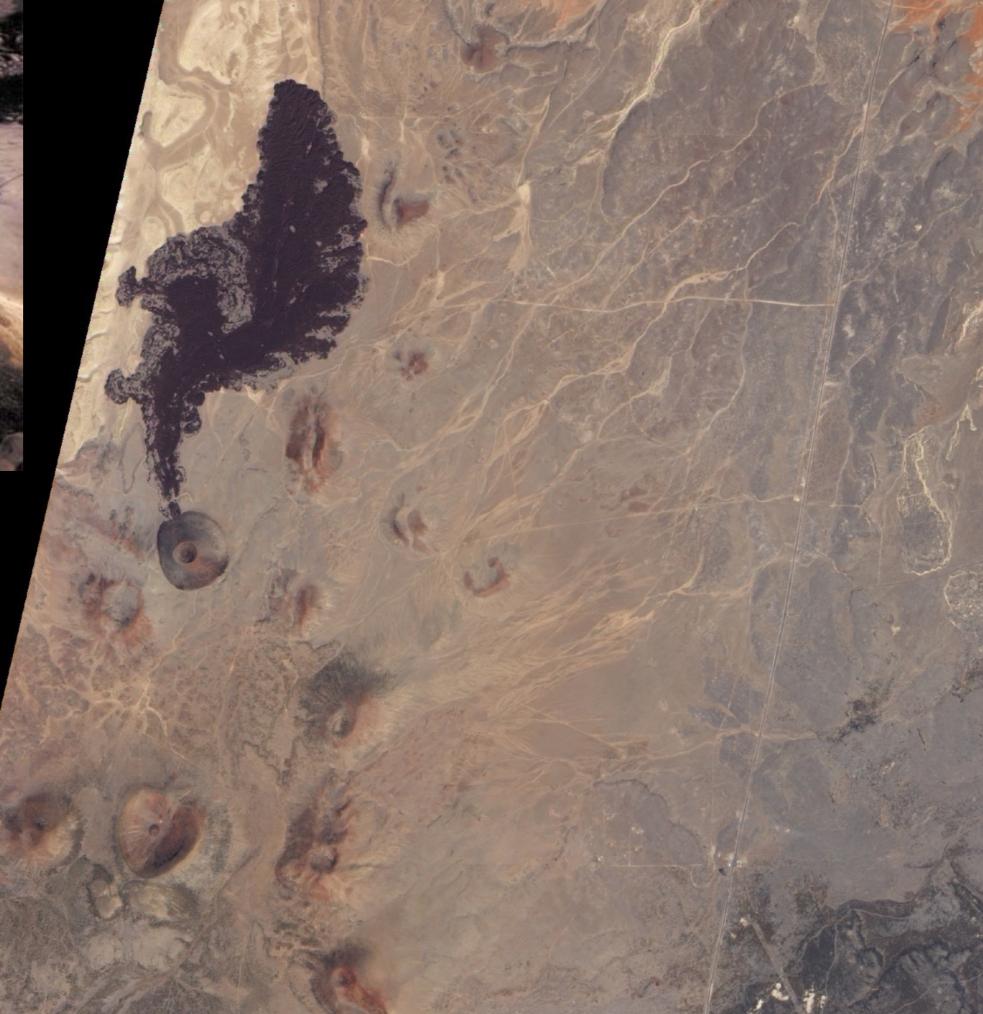


Linear regression



But why do we sometimes find the occurrence of simple patterns in nature surprising?

San Andreas Fault at Carrizo Plain (by John Wiley, from Wikimedia Commons)



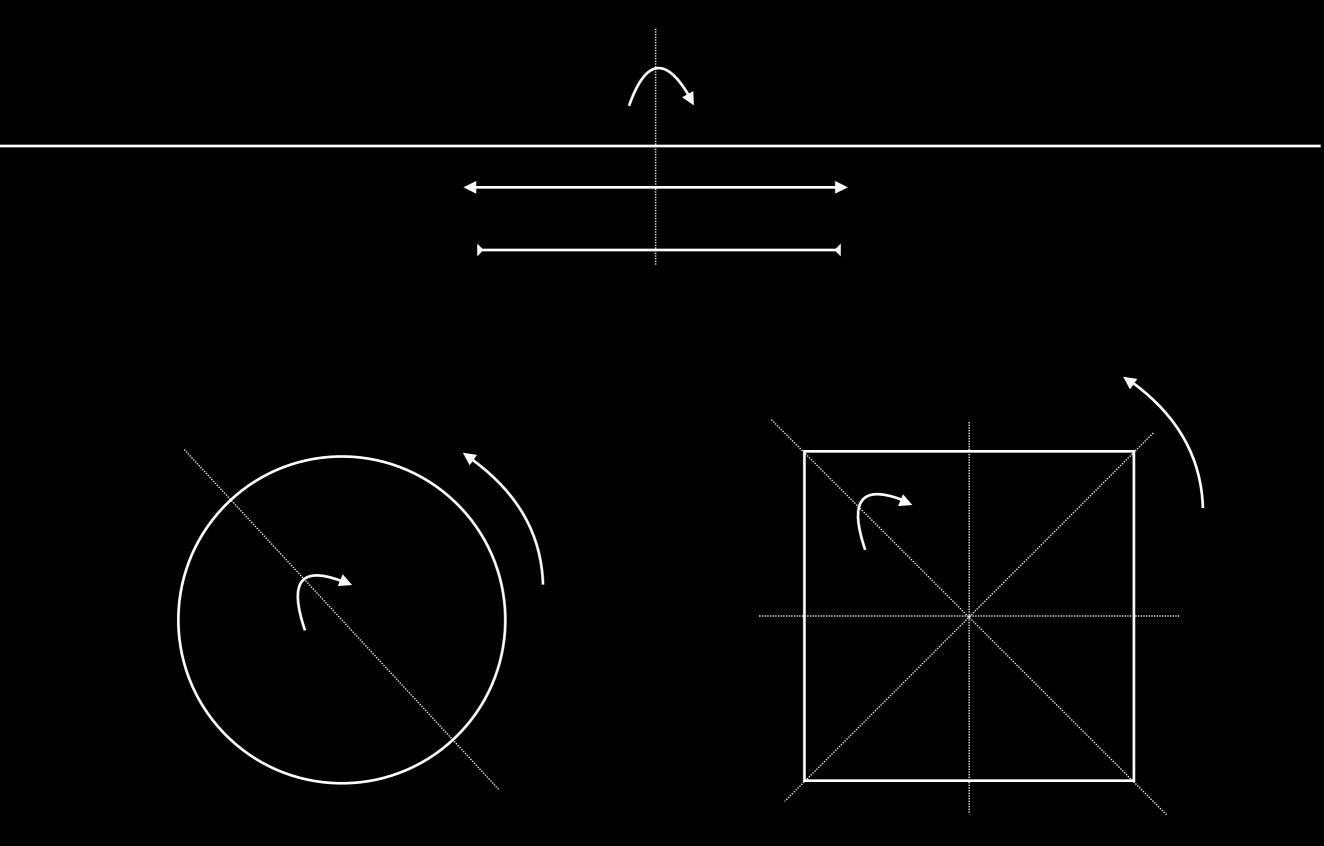
THE ANCIENT WORLD

Greek architecture = a lot of fundamental patterns

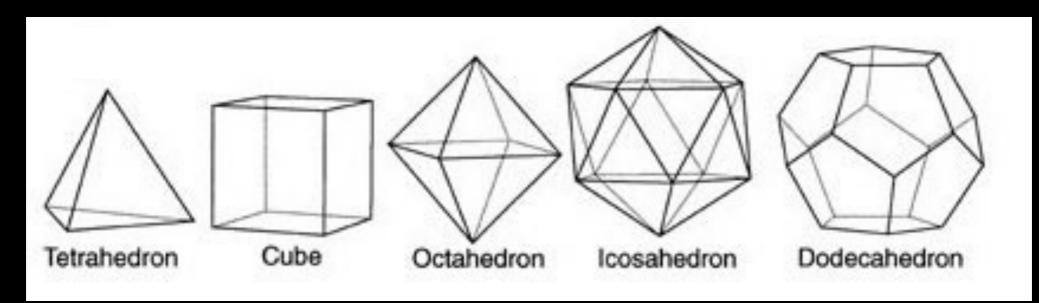
(IS THERE A PATTERN OF DECAY?)

Greek architecture, Tennessee style

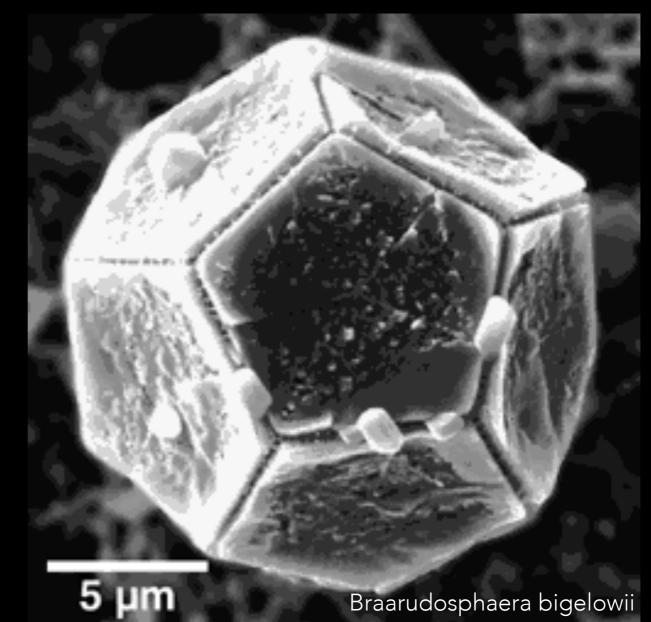
Fundamental pattern: Symmetry



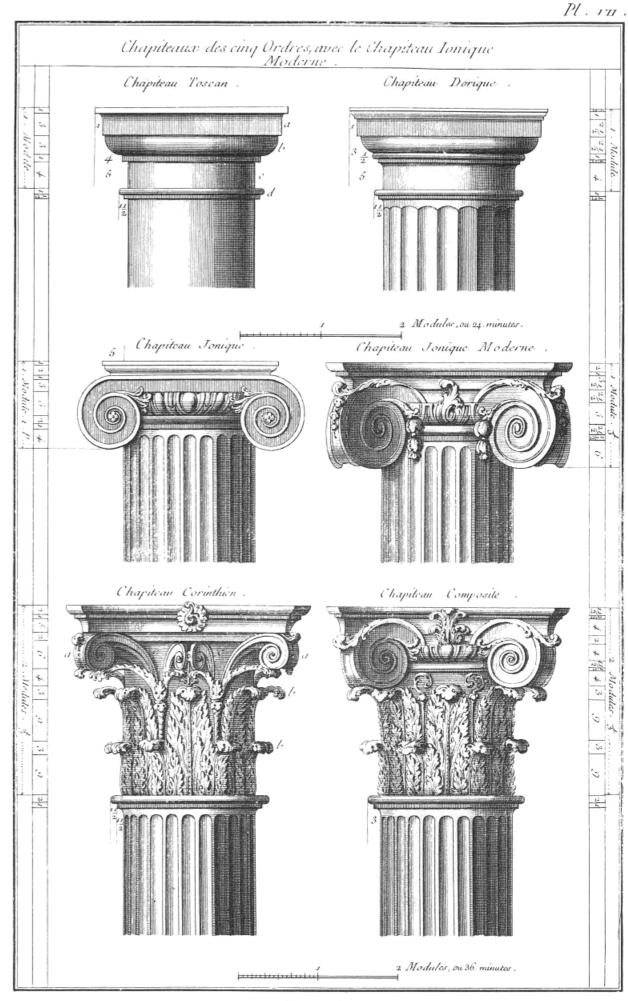
The Platonic Solids



Pyrit (Eisensulfid), Navajun/Spanien, Foto und Copyright: T. Seilnacht



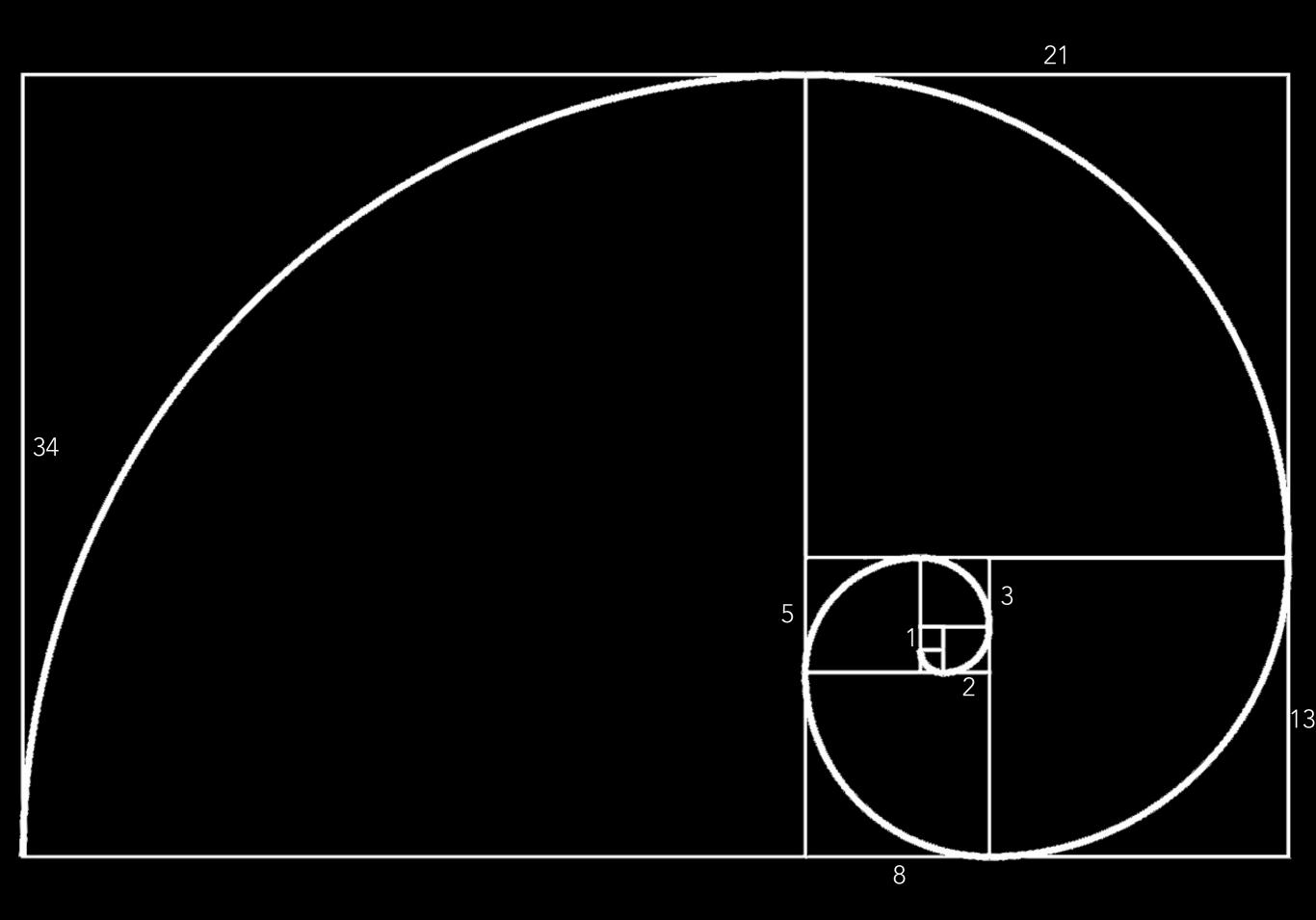
But the patterns evolved over time...

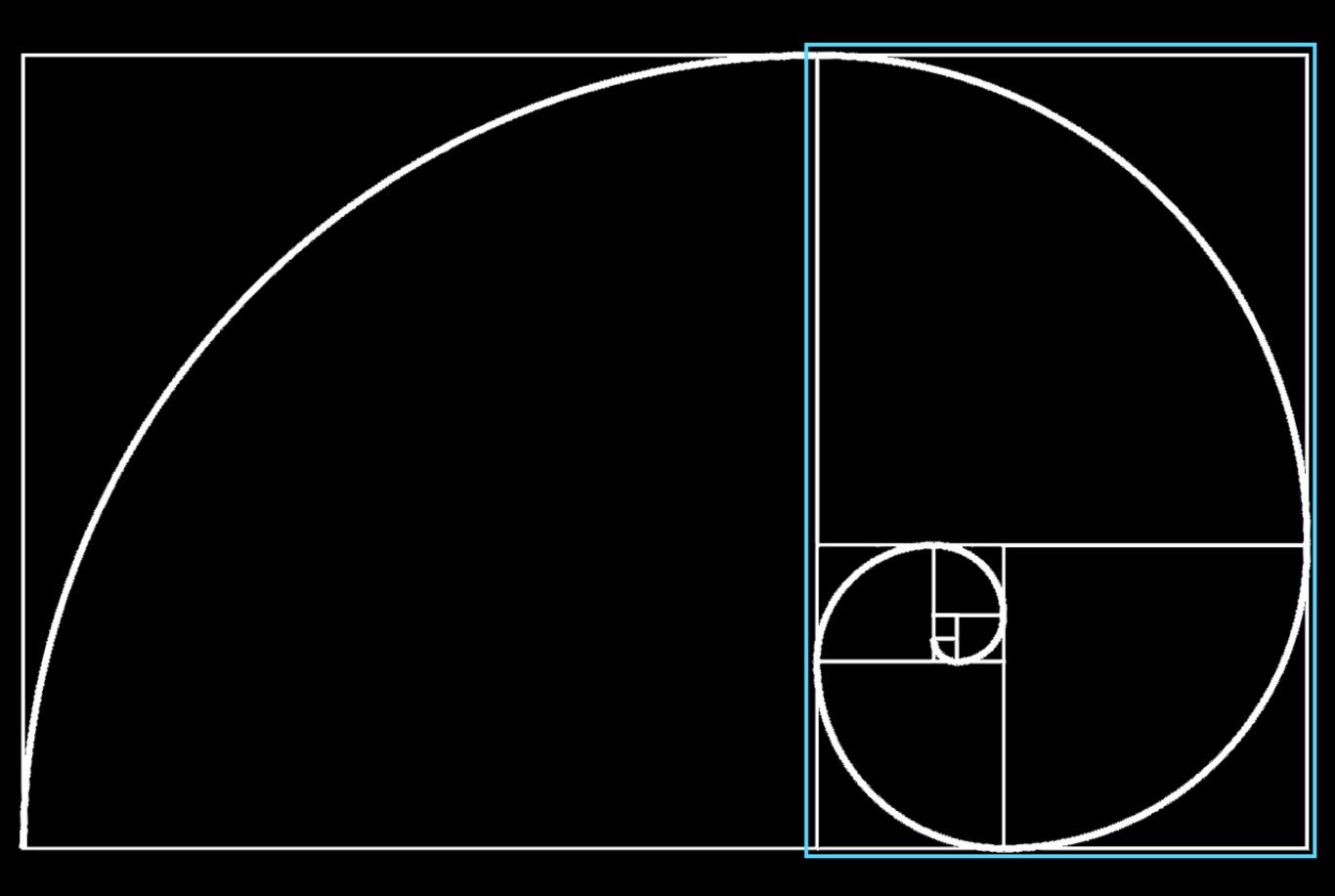


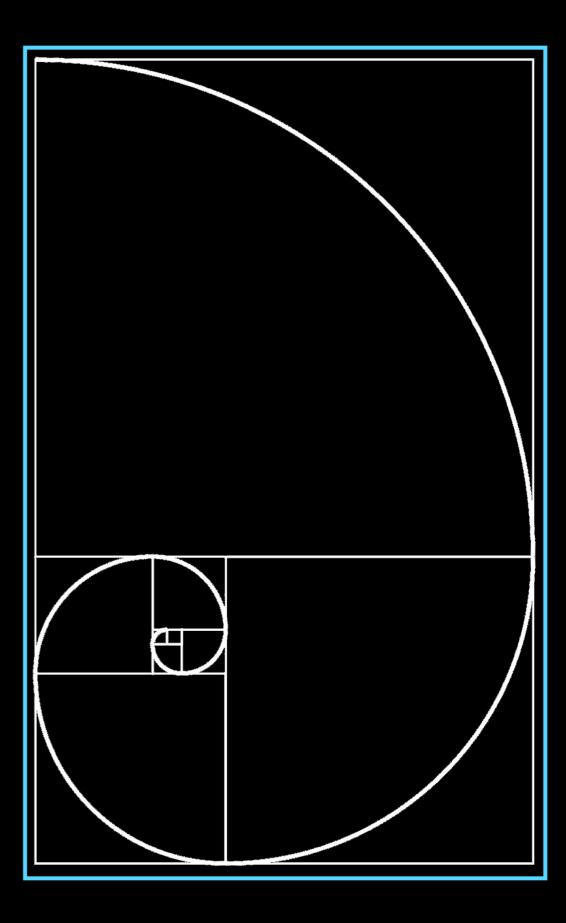
Architecture

Digression: Spirals

Messier 51 "Whirpool" Galaxy (Photo: NASA)

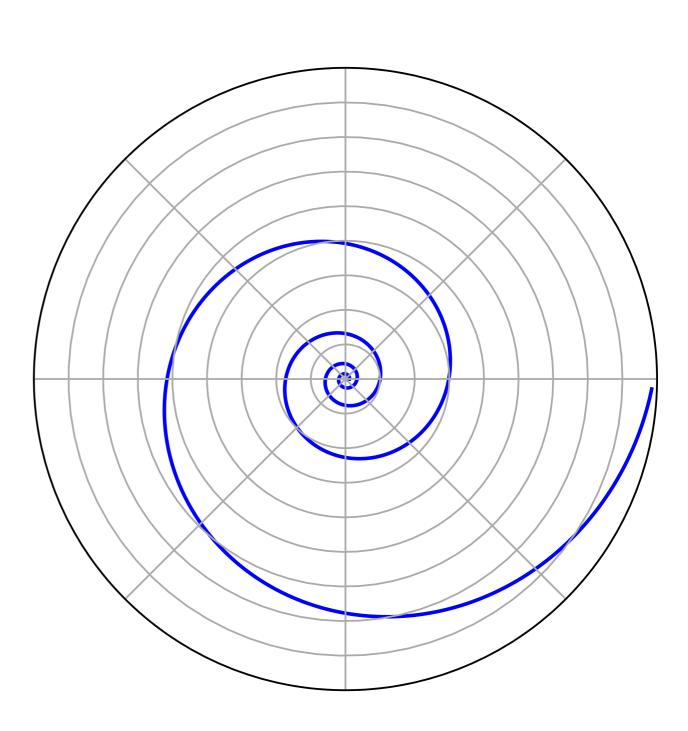






Logarithmic Spirals a synthesis of circle and line

Symmetry: Rotation + Scaling

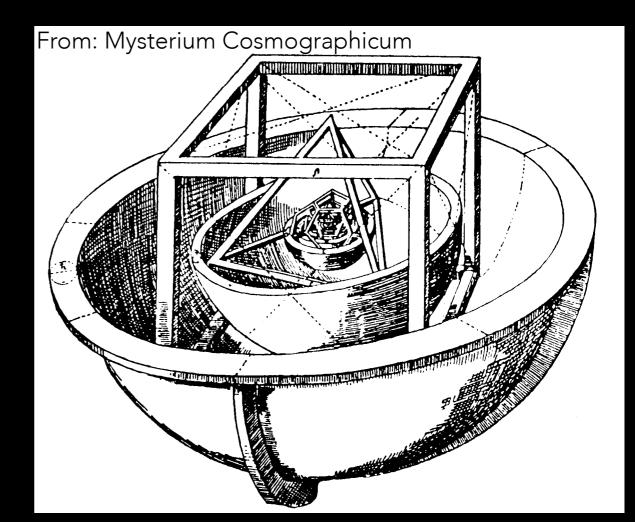


THE AGE OF BAROQUE -DAWN OF THE INFINITESIMAL

Kepler – from circle to ellipsis

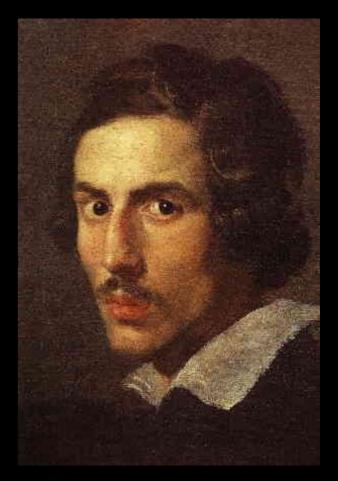
1st law: The orbit of a planet is an ellipse with the Sun at one of the two foci.

But Kepler also believed in a strong, pre-established harmony of the universe, based on fundamental geometric patterns.



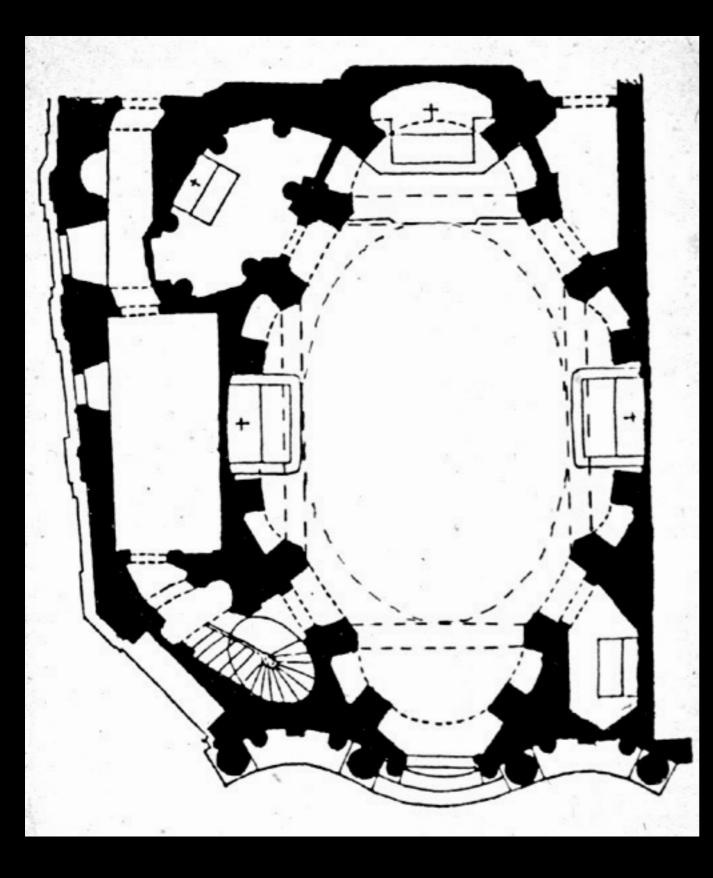
Rome – Bernini vs Borromini

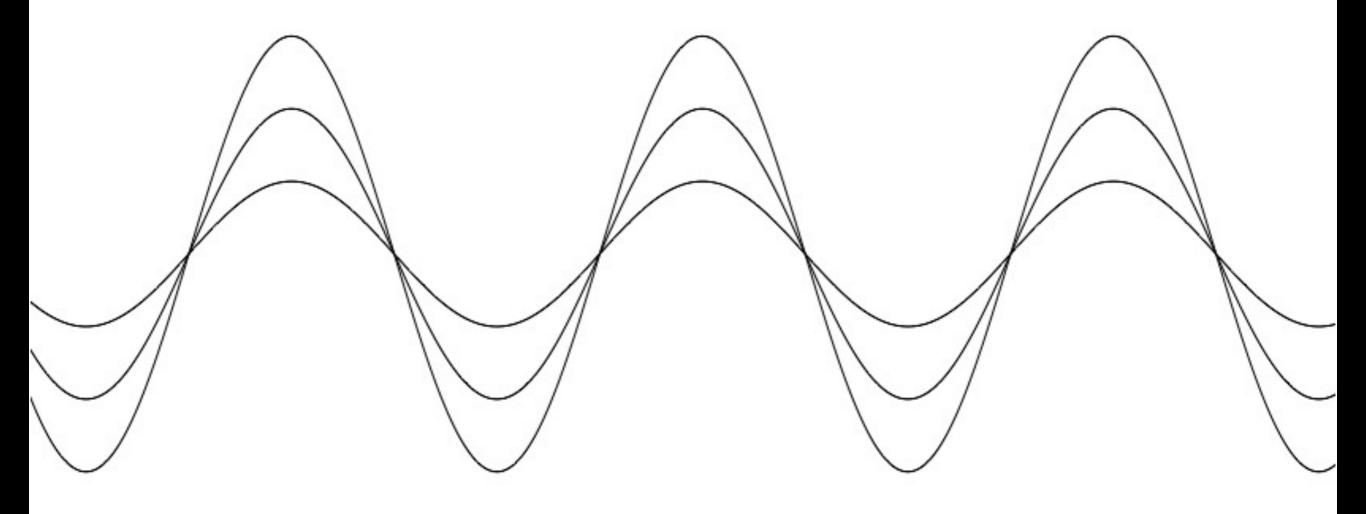
Francesco Borromini



Gianlorenzo Bernini

San Carlo alle Quattro Fontane





Newton and Leibniz: Triumph of the Infinitesimal

In a smooth world, everything looks locally like a line.

19TH CENTURY

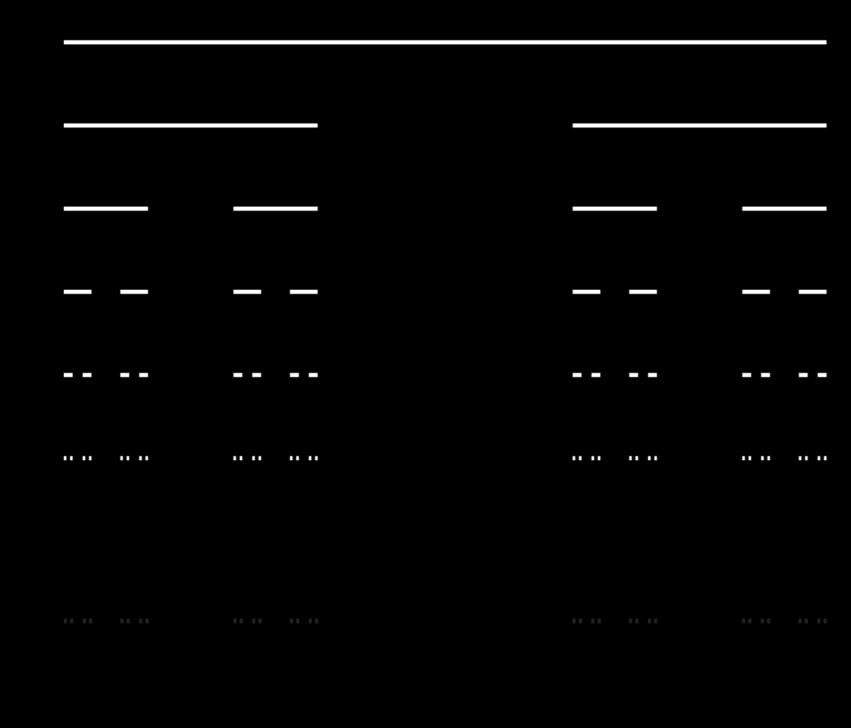
INFINITESIMAL ABNORMALITIES

This does not look smooth.

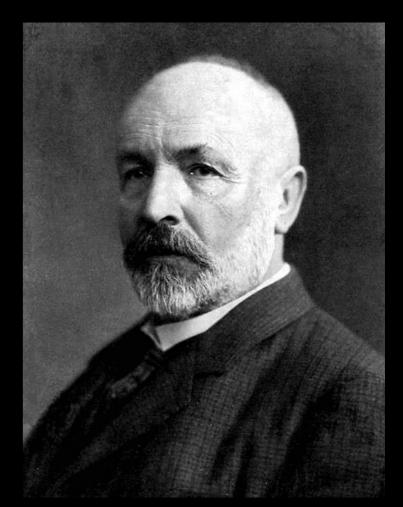
This does not look smooth.

In fact, in many cases we find smooth patterns rather surprising...

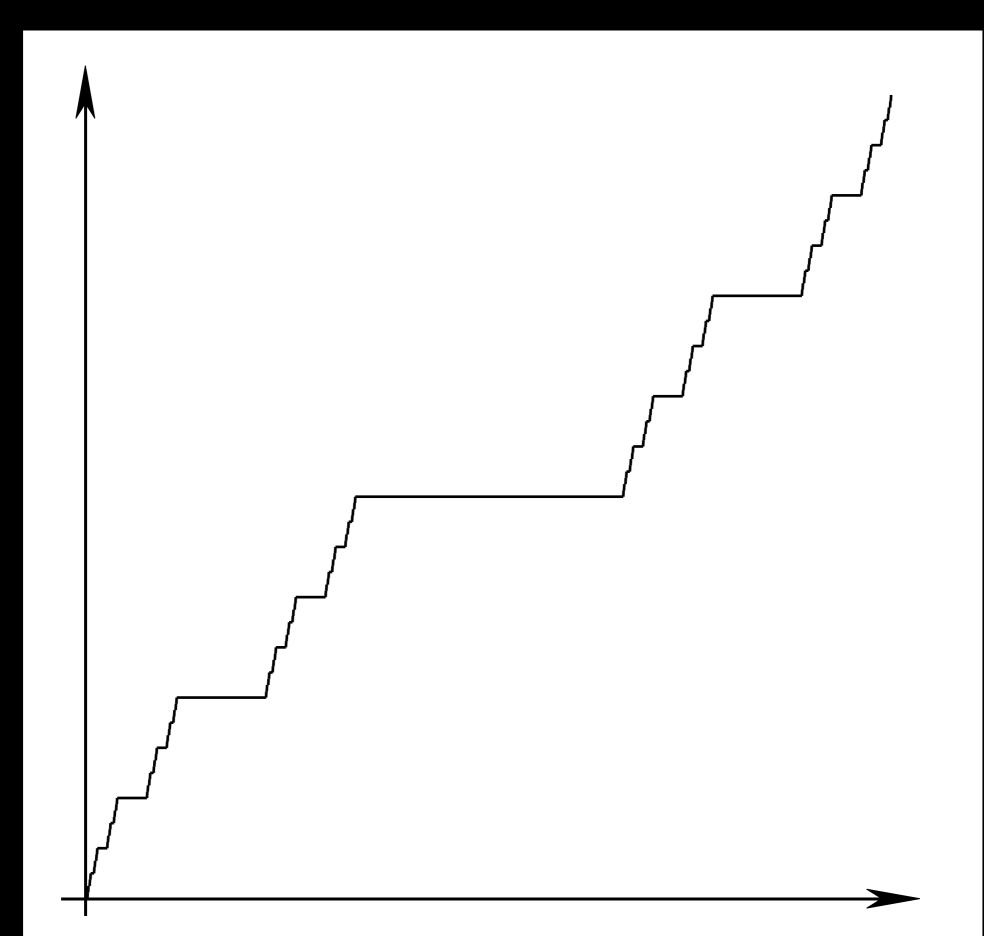
The Cantor Set



Georg Cantor (1845-1918)

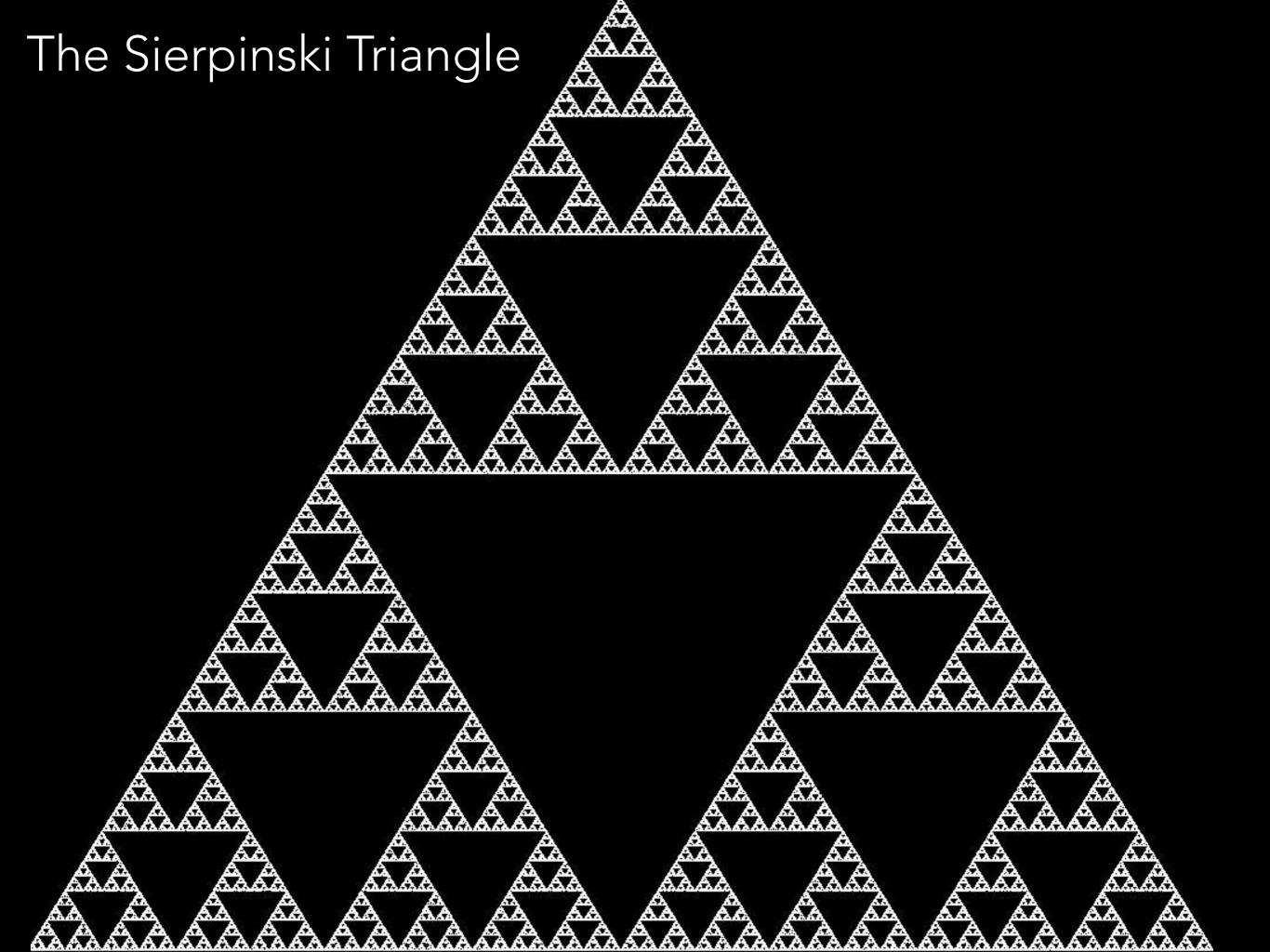


Not smooth at all...

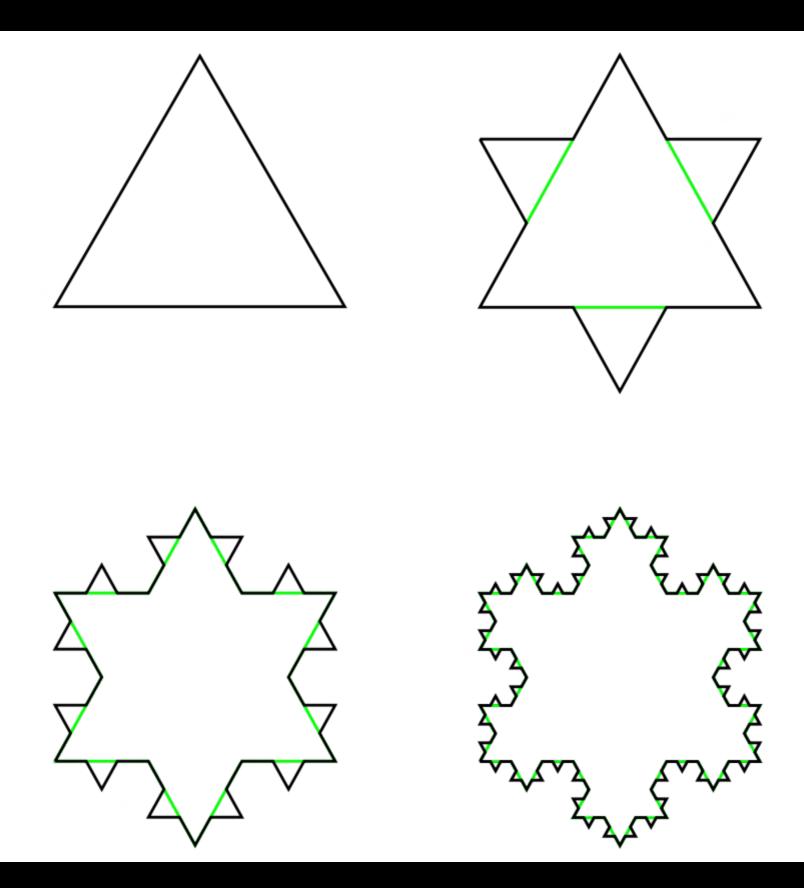


The Cantor Dust

		==	==					
		==	==	==				
	::	==		==			 	
		**						**
==	==	==	::	==				
			==					
	::: :::	::: :::		:: ::				
				::		 		
==	 	 		 	 		 	
		 	 	 	 **	 	 	



The Koch Snowflake



What happens if we "zoom in" any of these sets?



We obtain the original set back!

This behavior is called "self-similarity". It is a different kind of symmetry.

Remember the spirals.

Important difference: These sets are similar to multiple parts of themselves.

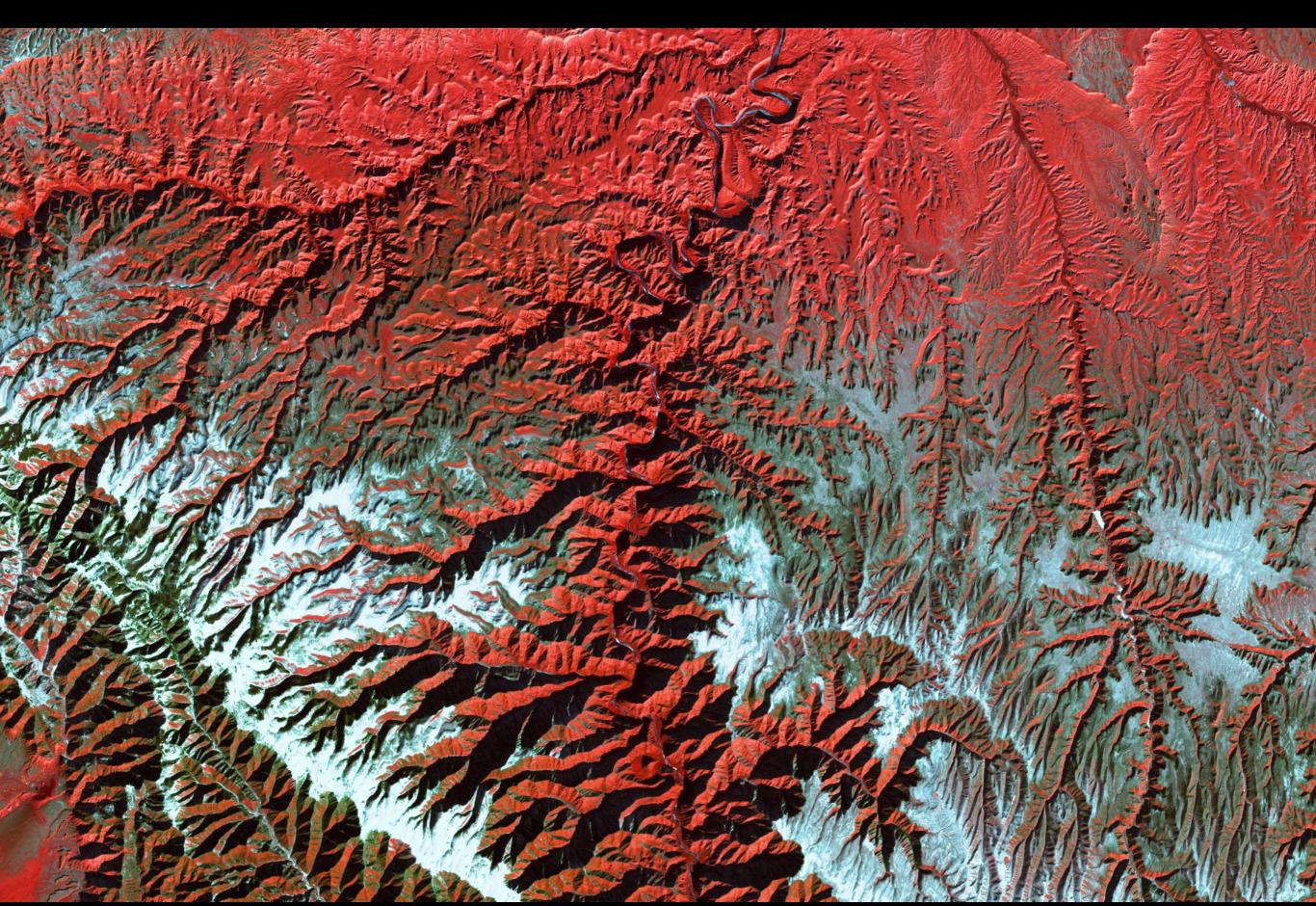
20TH CENTURY -THE DAWN OF FRACTALS

What do these strange mathematical sets have to do with patterns in nature?

There is plenty of self-similarity...

There is plenty of self-similarity...

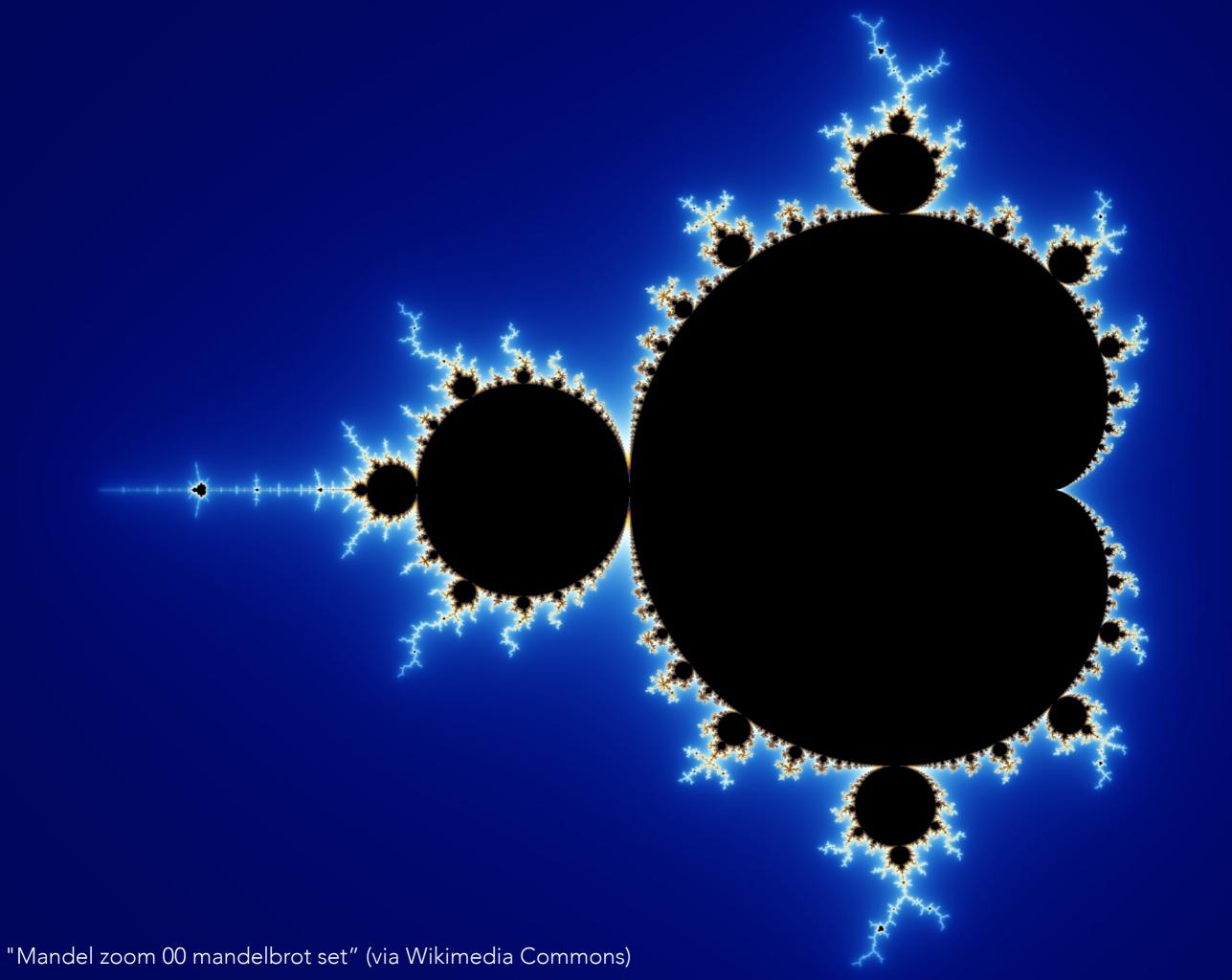
There is plenty of self-similarity...



Benoit Mandelbrot studied how simple processes could give rise to complex selfsimilar forms

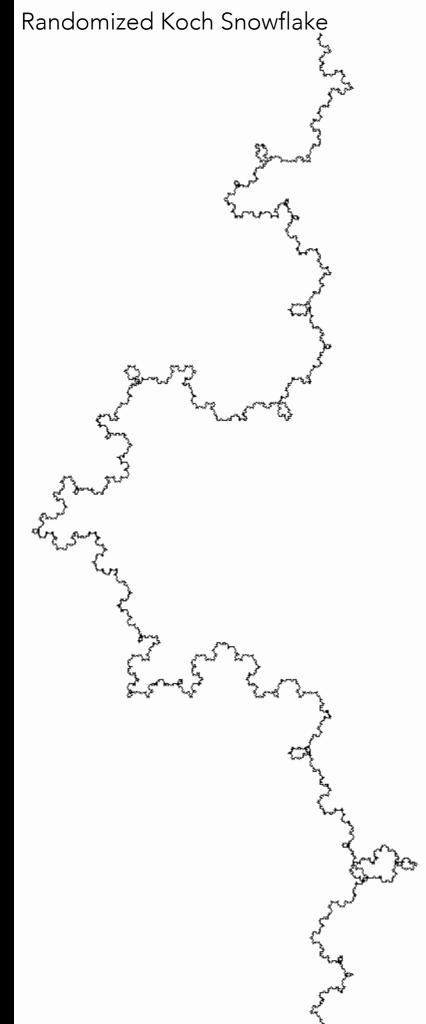
Along the way, he coined the term "fractal" and established fractal geometry as a proper mathematical discipline.

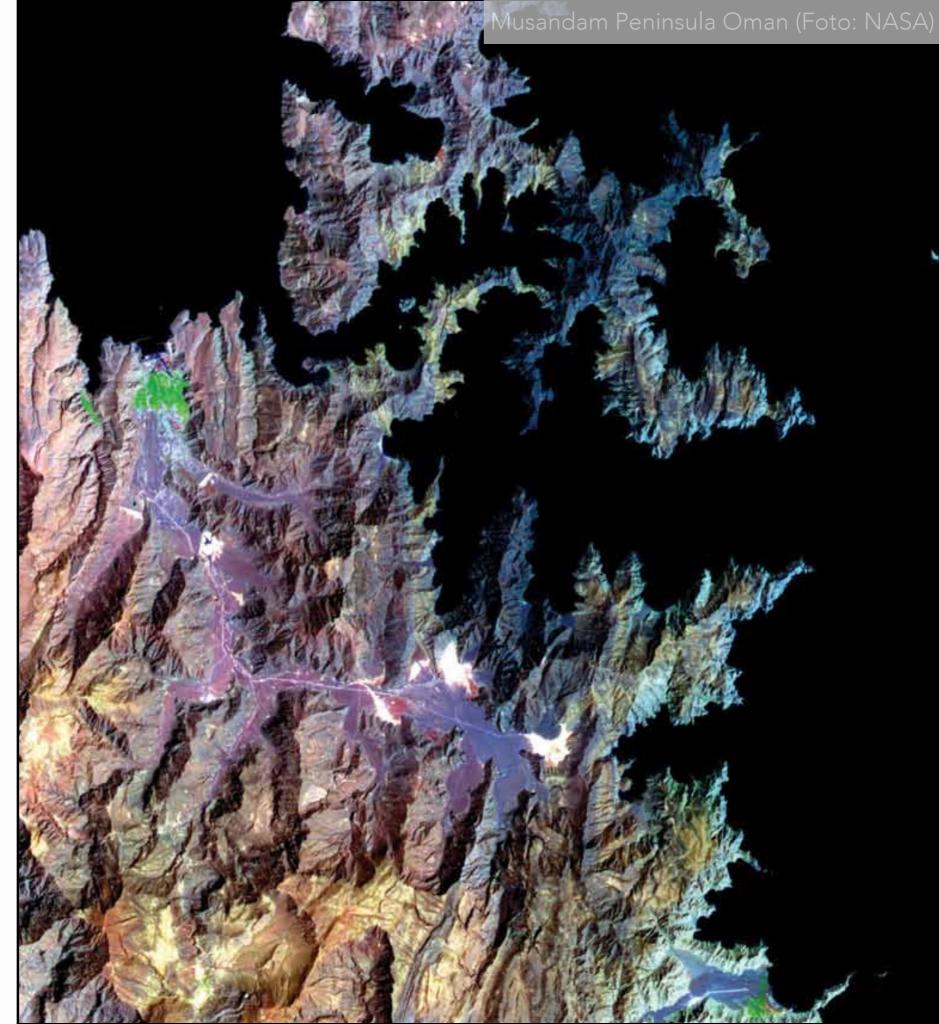
He called it the "theory of roughness", as opposed to classical – smooth – geometry

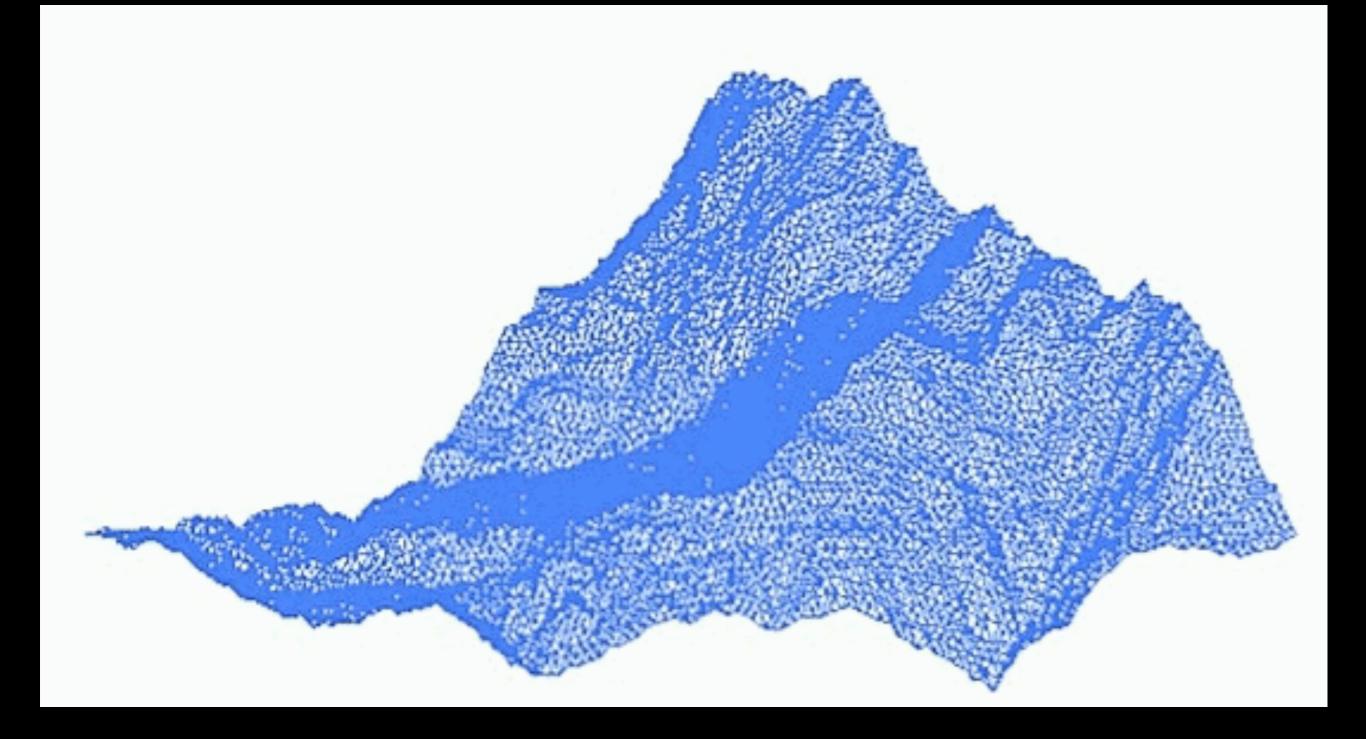


But how do the mathematical fractals connect to the "fractals" occurring in nature? (They seem "too regular"...)

Enter: Randomness!





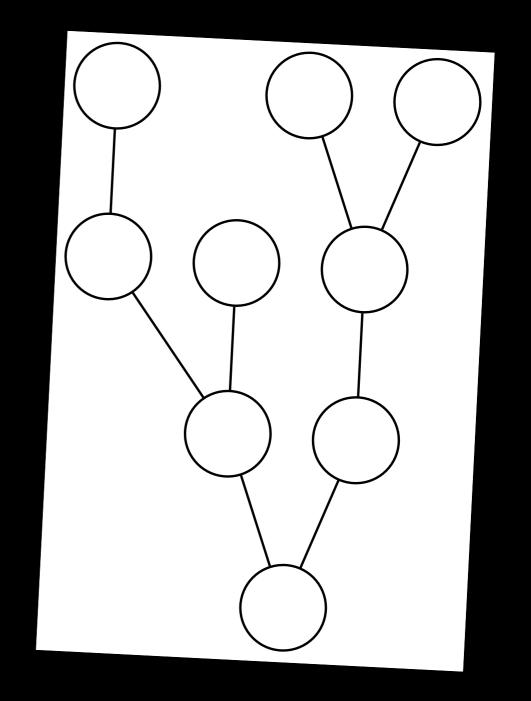


"We still share [Kepler's] belief in a mathematical harmony of the universe. It has withstood the test of ever widening experience. But we no longer seek this harmony in static forms like the regular solids, but in dynamic laws."

-HERMANN WEYL, SYMMETRY

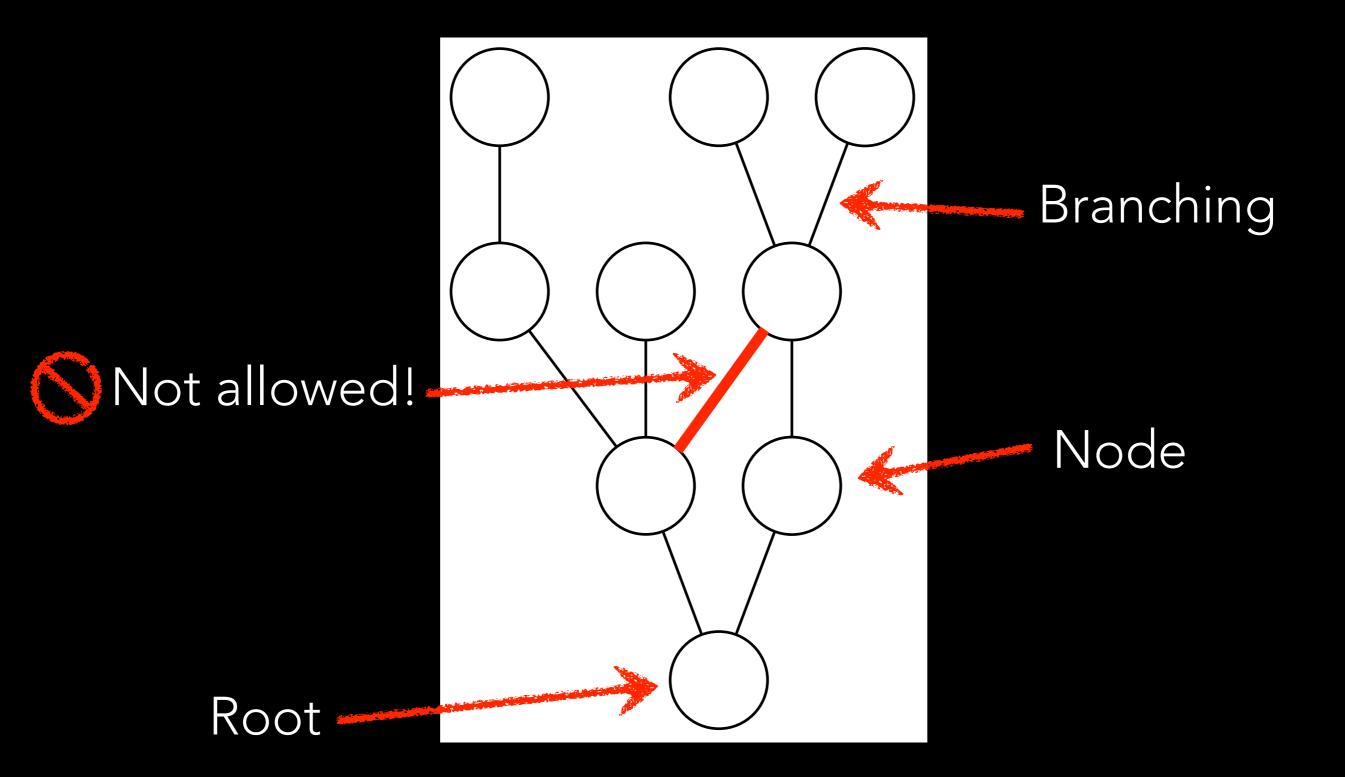
Digression: Trees





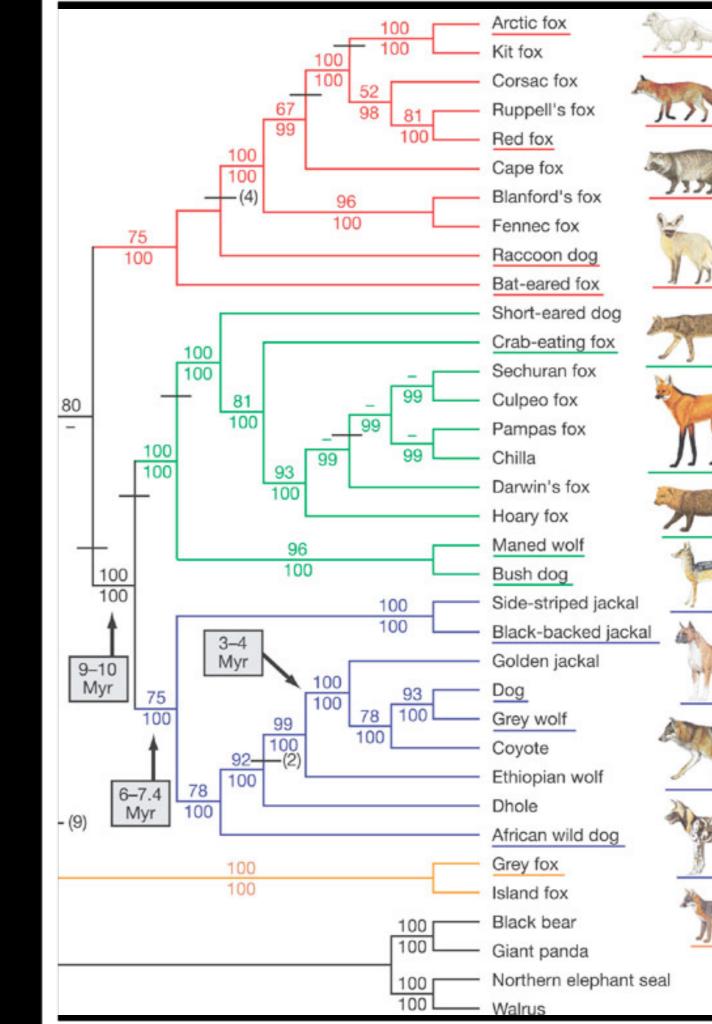
Mathematician's Tree

Mathematical Tree

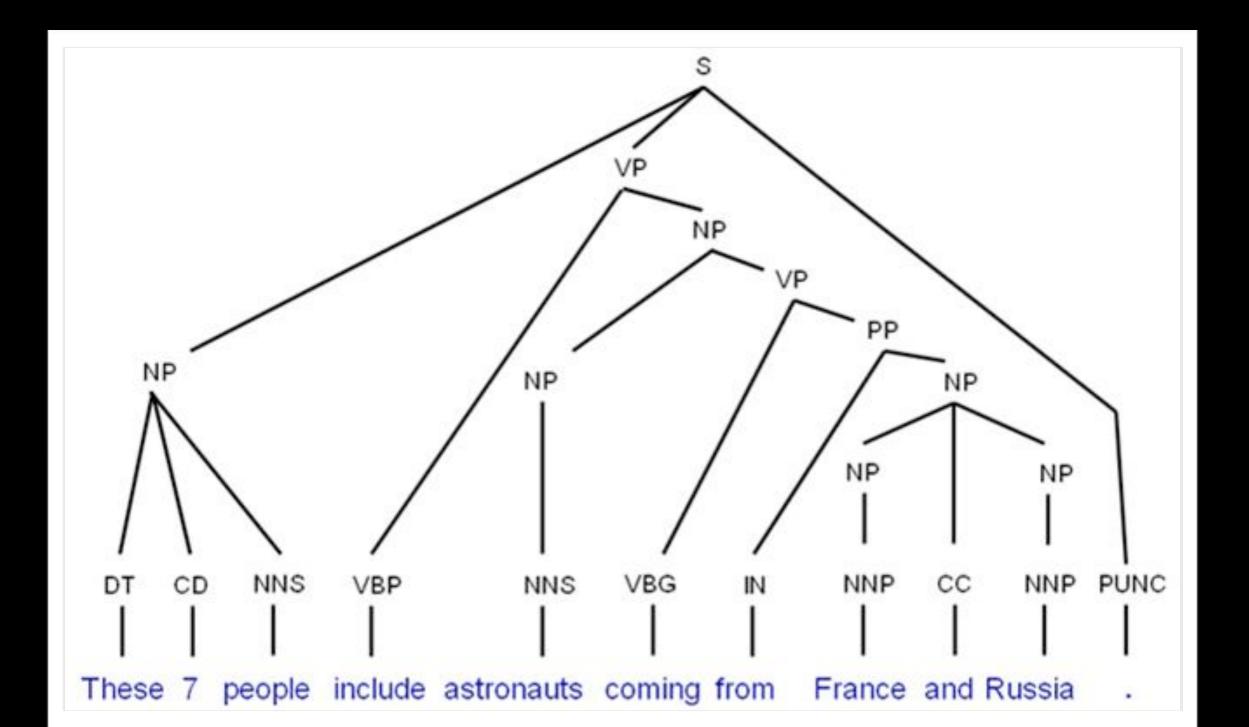


Trees are Plentyful

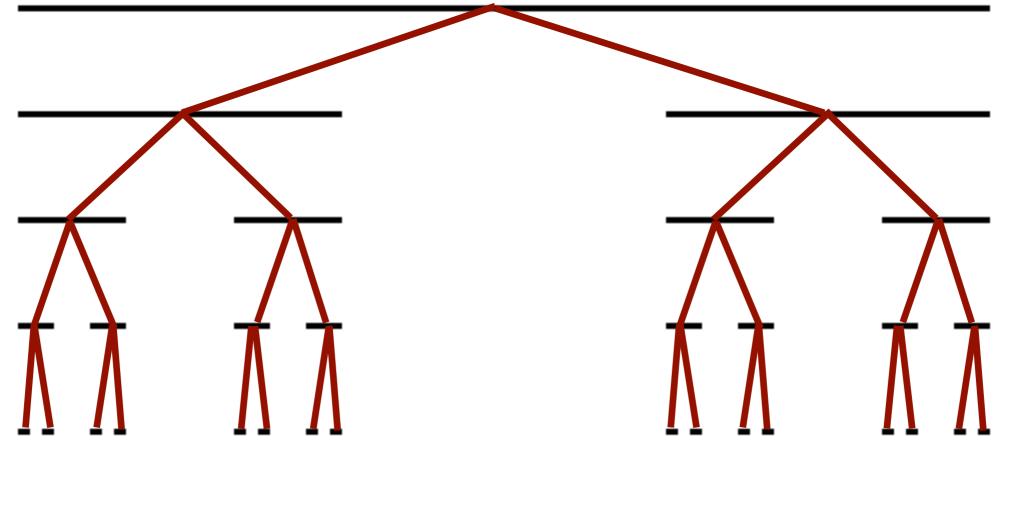
- In biology: phylogenetic trees are used to classify species (or other entities) according to common ancestors.
- Simple version:
 Family tree



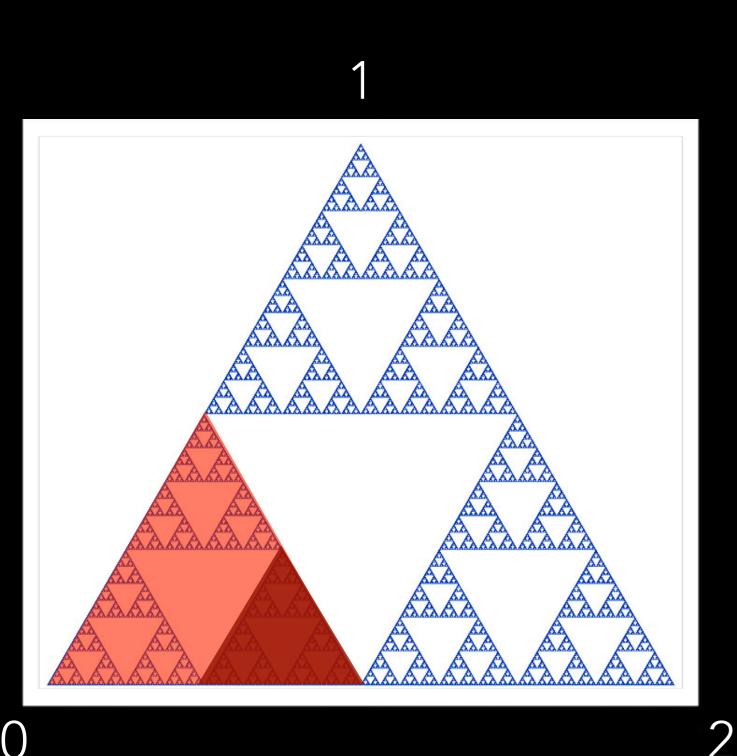
Linguistics

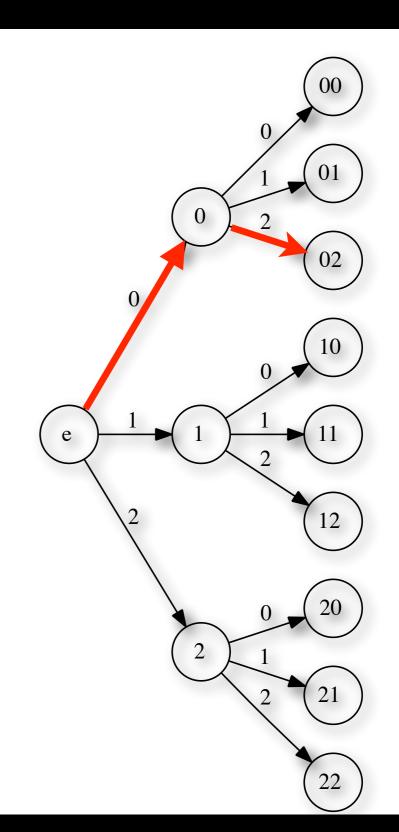


The Cantor Tree

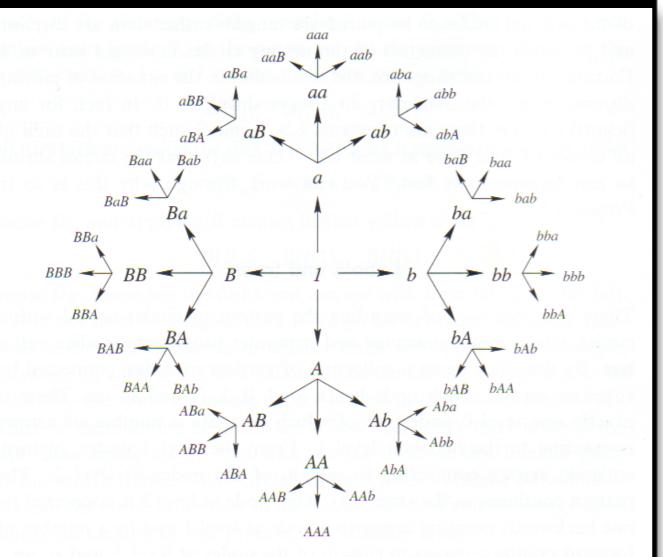


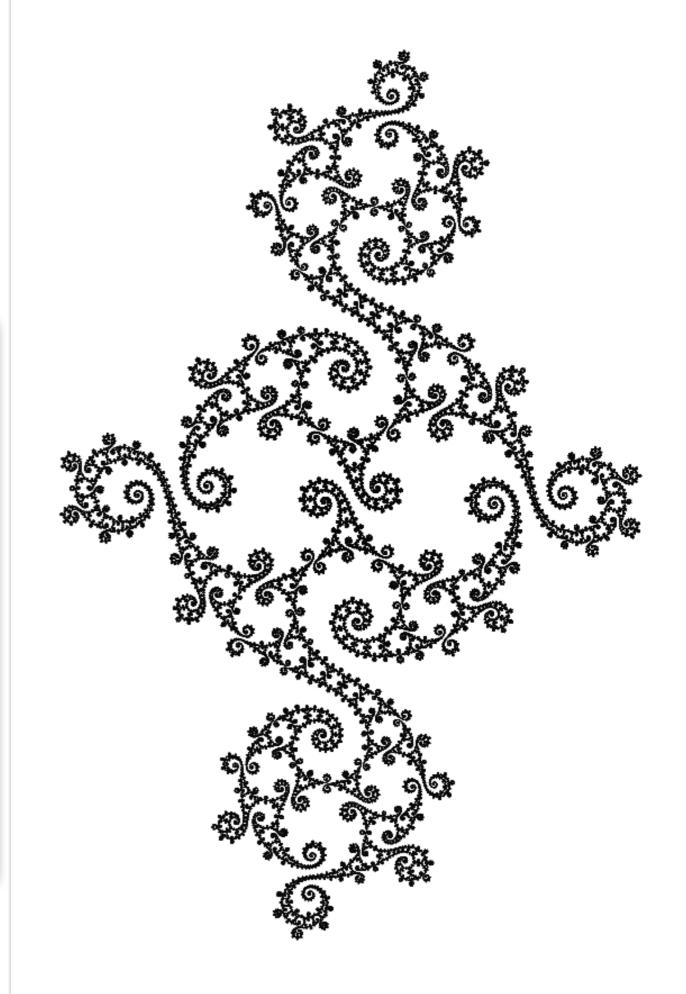
The Sierpinski Triangle





Coding Fractals





21ST CENTURY -THE INFORMATION AGE

Trees are a good example of a pattern that is interesting from a geometric as well as from a combinatorial point of view. Today, in the age of big data, objects we are studying are often of this "mixed" nature

How do we find "patterns" here?

COULD WE LEAVE IT TO COMPUTERS?

Patterns = Data Compression

PRINT "01" 24 TIMES

???

Patterns = Data Compression

Compression ratio ~ 0.75

Compression ratio ~ 0.4

So, could we just start a computer program with the instruction:

FIND THE BEST POSSIBLE COMPRESSION (I.E. SHORTEST DESCRIPTION) OF OUR OBJECT.

The shortest description would then be the ultimate pattern of the object

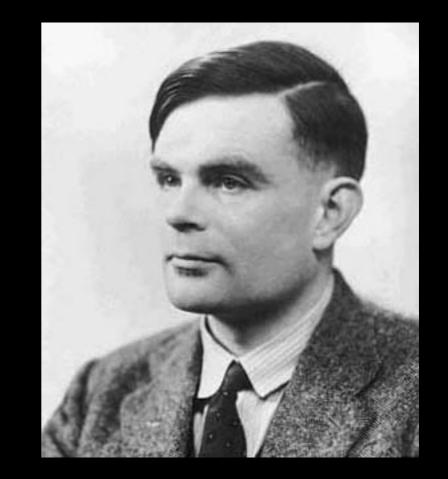
We would have

regular object = simple pattern = short descriptions random noise = no pattern = no short description

"Unfortunately", such a computer program cannot exist

The reason is that we can never be sure whether some compression is actually the shortest possible.

This is a consequence of the Unsolvability of the Halting Problem, shown by Alan Turing



"Mathematical thinking is, and must remain, essentially creative."

-EMILE POST, 1944

Thank you!

FOR SLIDES AND REFERENCES: JAN.REIMANN@PSU.EDU