Effective Aspects of Diophantine Approximation

Jan Reimann, Penn State
joint work with V. Becher and T. Slaman

Diophantine Approximation

- Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.
- Measure in terms of denominator:

$$
\left|x-\frac{p}{q}\right|<F(q)
$$

- For which F does this have infinitely many solutions?

Dirichlet

- For any irrational number α there exist infinitely many rational numbers p / q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

- Such a sequence is given by the continued fraction expansion

$$
\alpha=\left[a_{0} ; a_{1}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}} \quad a_{i} \in \mathbb{Z}^{+}
$$

Limits of approximability

- In general, one cannot improve the factor 2 in Dirichlet's theorem.
- A number β is badly approximable if there exists a K such that

$$
\forall \frac{p}{q}\left|\beta-\frac{p}{q}\right|>\frac{K}{q^{2}}
$$

- badly approximable \Leftrightarrow continued fraction bounded.

Badly approximable numbers

- Roots of quadratic polynomials are badly approximable (continued fraction is periodic).
- Golden mean $(1+\sqrt{5}) / 2=[1 ; 1,1,1, \ldots]$.
- $\sqrt{2}=[1 ; 2,2,2, \ldots]$
- Let

$$
M(\alpha)=\inf \left\{M: \exists^{\infty} p / q|\alpha-p / q|<M / q^{2}\right\} .
$$

- Question: Is $K(\alpha)$ computable for algebraic numbers?
- Recent work by Chonev, Ouaknine, and Worrell ties this to the (unbounded) Continuous Skolem Problem.

Liouville

- Roots of quadratic polynomials are badly approximable (continued fraction is periodic).
- THM: If α is algebraic of degree d, then there exists a constant $L(\alpha)$ such that

$$
\forall \frac{p}{q}\left|\alpha-\frac{p}{q}\right|>\frac{L(\alpha)}{q^{d}} .
$$

- L is computable from the minimal polynomial for α.

Transcendental Numbers

- Liouville used this result to explicitly construct transcendental numbers.
- They are examples of what is now known as a Liouville number:

$$
\forall n \exists \frac{p}{q}\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{n}}
$$

Measuring Irrationality

The irrationality exponent of a real number x is defined as

$$
\delta(x)=\sup \left\{\delta: \exists^{\infty} \frac{p}{q}\left|x-\frac{p}{q}\right|<\frac{1}{q^{\delta}}\right\} .
$$

- Every irrational number has irrationality exponent ≥ 2.
- A Liouville number has $\delta=\infty$.
- Other examples:
- $\delta(e)=2$
- $\delta(\pi) \leq 7.60630853$

The Search For $\delta(\alpha)$

Let α be algebraic of degree d.

- Thue: $\delta(\alpha) \leq \frac{1}{2} d+1$ [1909]
- Siegel: $\delta(\alpha) \leq 2 \sqrt{d}$ [1921]
- Roth: $\delta(\alpha)=2$ [1955]

Effectivity Issues

While Liouville's proof is completely effective, Thue's method introduced ineffectiveness.

- In particular, for $\delta>\delta(\alpha)$, the exact, finite number of solutions cannot be extracted from the proof.
- Thm: [Davenport] There exist a primitive recursive function $\kappa(d)\left(\frac{1}{2} d+1<\kappa(d)<d\right)$ and a computable function $q(x, y)$ such that if $\kappa>\kappa(d)$ and α is algebraic of degree d,

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{\kappa}}
$$

has at most one solution $q>q(\alpha, \kappa)$.

Effectivity Issues

Question: Is the function

$$
(\alpha, \varepsilon) \mapsto \text { \# of solutions to }\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2+\varepsilon}}
$$

computable?

The Metric Theory

- Almost every real has irrationality exponent 2.
- Let

$$
I_{\delta}=\{x: \delta(x) \geq \delta\}
$$

- Jarník, independently Besicovitch:

$$
\operatorname{dim}_{H}\left(I_{\delta}\right)=\frac{2}{\delta}
$$

Jarnik's Fractal

- Let

$$
G_{q}(a)=\left\{x \in\left(\frac{1}{q^{a}}, 1-\frac{1}{q^{a}}\right): \exists p\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{a}}\right\} .
$$

- For n sufficiently large, $q_{1} \neq q_{2}$ prime and $n<q_{1}, q_{2} \leq 2 n$,

$$
G_{q_{1}}(a) \cap G_{q_{2}}(a)=\varnothing \text { with gaps } \geq \frac{1}{8 n^{2}}
$$

Jarník's Fractal

- If we let

$$
H_{n}(a)=\bigcup_{\substack{q \text { prime } \\ n<q \leq 2 n}} G_{q}(a),
$$

and let $\left(n_{i}\right)$ be a sufficiently fast growing sequence, then

$$
\bigcap H_{n_{i}}(a)
$$

is a Cantor set (after some trimming) containing only reals with irrationality exponent $\geq a$.

- Show that this Cantor set has dimension 2/a.

Mass Distribution Principle

Let $s>0, X \subseteq \mathbb{R}$. If μ is a probability measure on \mathbb{R} such that $\mu(X)>0$, and there exist $\varepsilon, c>0$ such that for every interval I,

$$
|I|<\varepsilon \text { implies } \mu(I) \leq c \varepsilon^{s},
$$

then

$$
\operatorname{dim}_{H}(X) \geq s
$$

- We can uniformly distribute a (unit) mass along a Cantor set and get a bound for the measure of $|I|$ from
- the number of subintervals in each step (for Jarník's fractal: prime number theorem),
- the length of gaps between intervals.

Effective Dimension

- The irrationality exponent reflects how well a real can be approximated by rational numbers.
- The effective dimension [Lutz] reflects how well a real can be approximated by computable numbers:

$$
\operatorname{dim}(x)=\liminf _{n \rightarrow \infty} \frac{C(x \upharpoonright n)}{n}
$$

Effective Dimension and Irrationality Exponent

- For a random real $x, p / q$ cannot give significantly more than $2 \log q$ bits of information about x.
- Hence almost every real has irrationality exponent 2.
- If $x \in(0,1)$ is Liouville, on the other hand, for every n there exist p / q such that $2 \log q$ bits of information give us $n \log q$ bits of x
- Hence the effective dimension of a Liouville number is 0 [Staiger]
- This line of reasoning can be generalized to obtain

$$
\operatorname{dim}(x) \leq \frac{2}{\delta(x)} \quad[\text { Calude \& Staiger] }
$$

- This gives the upper bound on the Hausdorff dimension of I_{δ}

Effective Dimension and Irrationality Exponent

Jarník's proof actually shows that

$$
\operatorname{dim}_{H}\{x: \delta(x)=\delta\}=\frac{2}{\delta}
$$

Question: Are Hausdorff/effective dimension and irrationality exponent completely independent?

- Can reals have effective dimension $\beta<2 / \delta$ for any choice of β ?

Main Results

Theorem 1
Let $\delta \geq 2$. For every $\beta \in[0,2 / \delta]$ there is a Cantor-like set E such that $\operatorname{dim}_{H}(E)=\beta$ and for the uniform measure on E, almost all real numbers have irrationality exponent δ.

Features Of The Proof

- Basic approach is to "thin" Jarník's fractal - use less intervals at each step.
- However, in a straighforward way this only gets us down to dimension $1 / \delta$.
- We can get past this barrier by choosing only a uniformly spaced subset of $G_{q}(\delta)$ for a single q each step.
- Another problem is that the thinning might concentrate the measure no longer on reals of irrationality exponent δ.

Construction Template

- Define a family of Cantor sets

$$
\mathcal{E}(\vec{q}, \vec{m}, \vec{\delta})
$$

- \vec{q} : controls the choice of subintervals (thinning)
- \vec{m} : controls the branching ratio
- $\vec{\delta}$: controls the irrationality exponent (width of the intervals)
- Show that for each $\beta, \delta, \beta \leq 2 / \delta$, one can find suitable $\vec{q}, \vec{m}, \vec{\delta}$ such that every fractal in $\mathcal{E}(\vec{q}, \vec{m}, \vec{\delta})$ is a subfractal of the corresponding Jarník fractal $\mathcal{E}(\vec{m}, \vec{\delta})$ and has Hausdorff dimension β.

Construction Template

- The family $\mathcal{E}(\vec{q}, \vec{m}, \vec{\delta})$ can be seen as a tree of Cantor sets, since identical initial thinning choices up to stage n will lead to identical fractals at stage n.
- Use a measure-theoretic pigeonhole argument to construct a path through $\mathcal{E}(\vec{q}, \vec{m}, \vec{\delta})$ so that the resulting Cantor set has negligible measure on reals with irrationality exponent $>\delta$.

Main Results

Theorem 2
Let $\delta \geq 2$. For every $\beta \in[0,2 / \delta]$ there is a Cantor-like set E such that for the uniform measure on E, almost all real numbers have irrationality exponent δ and effective dimension β.

Construction Template

Modifications needed:

- Since δ and β are arbitrary real number, we have to work with approximations rather than the numbers directly.
- Ensure that the compressibility ratio of every member of E obeys the appropriate upper bound.
- exhibit an uniformly computable map taking binary sequences of a fixed, computable length onto the k-th step in the construction of E.

Reference

> V. Becher, J. Reimann, and T. Slaman, Irrationality exponent, Hausdorff dimension and effectivization, submitted. http://arxiv.org/abs/1601.00153

