
Effective Aspects of Diophantine
Approximation

Jan Reimann, Penn State
joint work with V. Becher and T. Slaman

1



Diophantine Approximation

• Diophantine Approximation classifies real numbers by how
well they may be approximated by rational numbers.

• Measure in terms of denominator:∣∣∣∣x − p
q

∣∣∣∣ < F (q)

• For which F does this have infinitely many solutions?
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Dirichlet

• For any irrational number α there exist infinitely many rational
numbers p/q such that

∣∣∣∣α− p
q

∣∣∣∣ < 1
q2

• Such a sequence is given by the continued fraction
expansion

α = [a0; a1, . . . ] = a0 +
1

a1 +
1

a2 + . . .

ai ∈ Z+
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Limits of approximability

• In general, one cannot improve the factor 2 in Dirichlet’s
theorem.

• A number β is badly approximable if there exists a K such
that

∀p
q

∣∣∣∣β − p
q

∣∣∣∣ > K
q2

• badly approximable ⇔ continued fraction bounded.
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Badly approximable numbers

• Roots of quadratic polynomials are badly approximable
(continued fraction is periodic).

• Golden mean (1 +
√
5)/2 = [1; 1, 1, 1, . . . ].

•
√
2 = [1;2,2,2,. . . ]

• Let

M(α) = inf
{

M : ∃∞ p/q |α− p/q| < M/q2
}
.

• Question: Is K (α) computable for algebraic numbers?
• Recent work by Chonev, Ouaknine, and Worrell ties this to the

(unbounded) Continuous Skolem Problem.
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Liouville

• Roots of quadratic polynomials are badly approximable
(continued fraction is periodic).

• THM: If α is algebraic of degree d , then there exists a
constant L(α) such that

∀ p
q

∣∣∣∣α− p
q

∣∣∣∣ > L(α)
qd .

• L is computable from the minimal polynomial for α.
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Transcendental Numbers

• Liouville used this result to explicitly construct transcendental
numbers.

• They are examples of what is now known as a Liouville
number:

∀n ∃p
q

∣∣∣∣α− p
q

∣∣∣∣ < 1
qn
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Measuring Irrationality

The irrationality exponent of a real number x is defined as

δ(x) = sup
{
δ : ∃∞ p

q

∣∣∣∣x − p
q

∣∣∣∣ < 1
qδ
}
.

• Every irrational number has irrationality exponent ≥ 2.
• A Liouville number has δ =∞.
• Other examples:

• δ(e) = 2
• δ(π) ≤ 7.60630853
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The Search For δ(α)

Let α be algebraic of degree d .

• Thue: δ(α) ≤ 1
2d + 1 [1909]

• Siegel: δ(α) ≤ 2
√

d [1921]
• Roth: δ(α) = 2 [1955]
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Effectivity Issues

While Liouville’s proof is completely effective, Thue’s method
introduced ineffectiveness.

• In particular, for δ > δ(α), the exact, finite number of solutions
cannot be extracted from the proof.

• Thm: [Davenport] There exist a primitive recursive function
κ(d) (1

2d + 1 < κ(d) < d) and a computable function q(x , y)
such that if κ > κ(d) and α is algebraic of degree d ,∣∣∣∣α− p

q

∣∣∣∣ < 1
qκ

has at most one solution q > q(α, κ).
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Effectivity Issues

Question: Is the function

(α, ε) 7→ # of solutions to
∣∣∣∣α− p

q

∣∣∣∣ < 1
q2+ε

computable?
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The Metric Theory

• Almost every real has irrationality exponent 2.
• Let

Iδ = {x : δ(x) ≥ δ}

• Jarník, independently Besicovitch:

dimH(Iδ) = 2
δ
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Jarnik’s Fractal

• Let

Gq(a) =
{

x ∈
( 1

qa , 1−
1
qa

)
: ∃p

∣∣∣∣x − p
q

∣∣∣∣ ≤ 1
qa

}
.

• For n sufficiently large, q1 6= q2 prime and n < q1, q2 ≤ 2n,

Gq1(a) ∩ Gq2(a) = ∅ with gaps ≥ 1
8n2
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Jarník’s Fractal

• If we let
Hn(a) =

⋃
q prime
n<q≤2n

Gq(a),

and let (ni) be a sufficiently fast growing sequence, then⋂
Hni (a)

is a Cantor set (after some trimming) containing only reals
with irrationality exponent ≥ a.

• Show that this Cantor set has dimension 2/a.
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Mass Distribution Principle

Let s > 0,X ⊆ R. If µ is a probability measure on R such that
µ(X ) > 0, and there exist ε, c > 0 such that for every interval I,

|I| < ε implies µ(I) ≤ cεs ,

then
dimH(X ) ≥ s.

• We can uniformly distribute a (unit) mass along a Cantor set
and get a bound for the measure of |I| from

• the number of subintervals in each step (for Jarník’s fractal:
prime number theorem),

• the length of gaps between intervals.
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Effective Dimension

• The irrationality exponent reflects how well a real can be
approximated by rational numbers.

• The effective dimension [Lutz] reflects how well a real can be
approximated by computable numbers:

dim(x) = lim inf
n→∞

C(x � n)
n
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Effective Dimension and Irrationality Exponent

• For a random real x , p/q cannot give significantly more than
2 log q bits of information about x .

• Hence almost every real has irrationality exponent 2.

• If x ∈ (0, 1) is Liouville, on the other hand, for every n there
exist p/q such that 2 log q bits of information give us n log q
bits of x

• Hence the effective dimension of a Liouville number is 0
[Staiger]

• This line of reasoning can be generalized to obtain

dim(x) ≤ 2
δ(x) [Calude & Staiger].

• This gives the upper bound on the Hausdorff dimension of Iδ
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Effective Dimension and Irrationality Exponent

Jarník’s proof actually shows that

dimH{x : δ(x) = δ} = 2
δ
.

Question: Are Hausdorff/effective dimension and irrationality
exponent completely independent?

• Can reals have effective dimension β < 2/δ for any choice of β?
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Main Results

Theorem 1

Let δ ≥ 2. For every β ∈ [0, 2/δ] there is a Cantor-like set E such
that dimH(E ) = β and for the uniform measure on E , almost all
real numbers have irrationality exponent δ.
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Features Of The Proof

• Basic approach is to “thin” Jarník’s fractal – use less intervals
at each step.

• However, in a straighforward way this only gets us down to
dimension 1/δ.

• We can get past this barrier by choosing only a uniformly
spaced subset of Gq(δ) for a single q each step.

• Another problem is that the thinning might concentrate the
measure no longer on reals of irrationality exponent δ.
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Construction Template

• Define a family of Cantor sets

E(~q, ~m, ~δ)

• ~q: controls the choice of subintervals (thinning)
• ~m: controls the branching ratio
• ~δ: controls the irrationality exponent (width of the intervals)

• Show that for each β, δ, β ≤ 2/δ, one can find suitable ~q, ~m, ~δ
such that every fractal in E(~q, ~m, ~δ) is a subfractal of the
corresponding Jarník fractal E(~m, ~δ) and has Hausdorff
dimension β.
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Construction Template

• The family E(~q, ~m, ~δ) can be seen as a tree of Cantor sets,
since identical initial thinning choices up to stage n will lead to
identical fractals at stage n.

• Use a measure-theoretic pigeonhole argument to construct a
path through E(~q, ~m, ~δ) so that the resulting Cantor set has
negligible measure on reals with irrationality exponent > δ.
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Main Results

Theorem 2

Let δ ≥ 2. For every β ∈ [0, 2/δ] there is a Cantor-like set E such
that for the uniform measure on E , almost all real numbers have
irrationality exponent δ and effective dimension β.
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Construction Template

Modifications needed:

• Since δ and β are arbitrary real number, we have to work with
approximations rather than the numbers directly.

• Ensure that the compressibility ratio of every member of E
obeys the appropriate upper bound.

• exhibit an uniformly computable map taking binary sequences of
a fixed, computable length onto the k-th step in the
construction of E .
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