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Selection Rules
Von Mises revisited

Von Mises (1919) – Grundlagen der Wahrscheinlichkeitsrechung

Kollektives – Probabilities from a single sequence of outcomes

(1) “The relative frequencies of the attributes must possess
limiting values.”

(2) “... these limiting values must remain the same in all partial
sequences which may be selected from the original one in an
arbitrary way... The only essential condition is that the
question whether or not a certain member of the original
sequence belongs to the selected partial sequence should be
settled independently of the result of the corresponding
observation.”



Selection Rules
Von Mises revisited

Admissible selection rules
How should the notion of a selection rule be formalized? What
does “independently of” mean?

• Admissible: Select all even/odd/prime/... positions.

• Not admissible: Given a sequence 011010100 . . . , select all
positions where 0 occurs.

Two alternatives

(1) Fix the Kollektiv. Then try to find out what the admissible
selection rules are.

(2) Fix the admissible selection rules. Then investigate the
Kollektiv obtained.



Selection Rules
The Kollektive of normal numbers

Normal numbers
In a normal sequence every finite binary string σ occurs with
limiting frequency 2−|σ|.

Normal numbers as Kollektives – the modern view
Let T : 2N → 2N be the shift map, and given x ∈ 2N, let δx be the
Dirac measure residing on x . Then, if x is normal, any limit point
(in the weak topology) of the measures

µn =
1

n

n−1∑
i=0

δT i (x)

is the uniform (1/2, 1/2)-Bernoulli measure.



Selection Rules
Types

Two types of selection rules

• Oblivious selection rule: sequence S ∈ 2N.
Subsequence y = x/S obtained: all the bits x(i) with
S(i) = 1.

• (General) Selection rule: set L ⊆ 2<N.
Subsequence y = x/L obtained: the bits x(i) such that the
prefix x(0) . . . x(i − 1) is in L.

Question
Which general selection rules preserve normality?



Selection Rules
Normality and finite automata

Fundamental result by Agafonoff (1968), Schnorr and Stimm
(1972), and Kamae and Weiss (1975).

Theorem
If L is recognized by a finite automata, then L preserves normality.



Selection Rules
Normality and automata

Kamae and Weiss asked if normality is preserved by larger classes
of languages, too (e.g. context-free languages).

By generalizing Champernowne’s construction Merkle and R.
(2006) gave two counterexamples:

Theorem
There exist

• a normal sequence not preserved by a deterministic
one-counter language (accepted by a deterministic pushdown
automata with unary stack alphabet);

• a normal sequence not preserved by a linear language (slightly
more complicated).



Selection Rules
Oblivious selection rules – the role of entropy

For oblivious selection rules, Kamae (1973) gave a complete
characterization in terms of entropy of measures generated by
sequences under shift map.

Invariant measures for the shift map

If T denotes the shift map on 2N and x ∈ 2N, then any limit point
of the measures

µx
n =

1

n

n−1∑
i=0

δT i (x)

is shift invariant.



Selection Rules
Kamae’s Theorem

To any shift-invariant measure µ is assigned an entropy h(µ).

Kamae-entropy

For x ∈ 2N, define h(x) = sup{h(µ) : µ is a limit point of {µx
n}}.

Theorem
If S ∈ 2N has positive lower density, i.e. lim infn 1/n

∑
k S(k) > 0,

then the following are equivalent.

(i) S preserves normality

(ii) h(S) = 0

The proof uses Furstenberg’s notion of disjointness: Every process
of Kamae entropy 0 is disjoint from a process of completely
positive entropy.



Martin-Löf Randomness
From stochasticity to randomness

The second approach to Kollektives, fixing a set of admissible
selection rules first, drew criticism in the 1930’s, culminating in
Ville’s construction.

• Ville (1939) was able to show that for any countable set of
(monotone) selections rules, the resulting Kollektiv contains a
sequences violating the law of the iterated logarithm.

In spite of the widespread acceptance of the axiomatic foundation
of probability given by Kolmogorov (1933), Church suggested the
use of computable selection rules. This, and variants thereof
(Kolmogorov, Loveland), is now known as the theory of stochastic
sequences.



Martin-Löf Randomness
From stochasticity to randomness

Martin-Löf (1966) defined random sequences as sequences not
belonging to any effective nullset, which turned out to be a very
robust definition.

Definition
Let µ be an (outer) measure on 2N.

• A µ-test relative to z ∈ 2N is a set W ⊆ N× 2<N which is r.e.
(Σ0

1) in z such that ∑
σ∈Wn

µ(Nσ) ≤ 2−n,

where Wn = {σ : (n, σ) ∈W }.
• A real x passes a test W if x 6∈

⋂
n N(Wn).

• A real x is µ-random relative to z if it passes all µ-tests
relative to z ⊕ πµ, where πµ is a suitable representation of µ.



Martin-Löf Randomness
Lowness for randomness

Van Lambalgen (1987) studied reals that preserve Martin-Loef
randomness in the following sense:

• If x is µ-random, then it is also µ-random relative to z .

(The sequence z provides no useful information to prove any
µ-random real non-random.) Call such reals low for mu-random.

In the following we restrict ourselves to Lebesgue measure L.

Question
Are there non-computable reals that are low for random?



Martin-Löf Randomness
Lowness for randomness

Kucera and Terwijn (1999) showed that such reals exist. They
constructed a simple r.e. set that is low for random.

• The construction was the first example of a cost function
construction.

Questions

• What is the recursion theoretic nature of such reals?

• Is there a connection to entropy as in Kamae’s result?



Algorithmic Entropy
Kolmogorov complexity

Kolmogorov complexity

U universal Turing-machine. Define

C (σ) = CU(σ) = min{|p| : p ∈ 2<N, U(p) = σ}.

A prefix-free Turing machine is a TM with prefix-free domain. The
prefix-free version of C (use universal prefix free TM) is denoted by
K .



Algorithmic Entropy
Entropy and randomness

Schnorr’s Theorem (1973)

A real x is Martin-Löf random if and only if

∃c ∀n K (x �n) ≥ n − c .

Pointwise Shannon-McMillan-Breiman Theorem
(Levin,Brudno)

If µ is a computable Bernoulli measure, then for any µ-random x

lim
n→∞

K (x �n)

n
= h(µ) = −[p log p + (1− p) log(1− p)].



Algorithmic Entropy
Reals of low information content

K-triviality

• Chaitin (1976) considered trivial reals:

∃c ∀n C (A�n) ≤ C (n) + c

He showed that a real is C -trivial if and only if it is recursive.

• Solovay (1975) constructed non-recursive K -trivial reals.
Chaitin showed that all K -trivial reals are ∆0

2.

Low for K
Muchnik (1999) introduced reals that are low for K :

∃c ∀σ C x(σ) ≥ C (σ)− c



Algorithmic Entropy
Lowness for randomness = K -trivial

Work mainly by Nies (2005) showed that all notions coincide.

Theorem
A real x is low for random iff it is low for K iff it is K -trivial.

K -triviality hence provides a robust notion of low information
content.

Computational properties

The K trivial reals form a Σ0
3 ideal in the Turing degrees.



Algorithmic Entropy
K -trivial = low information content

There is another characterization in terms of mutual information.

Mutual information for finite strings - Kolmogorov, Levin

I (σ : τ) = K (σ) + K (τ)− K (σ, τ).

This can be extended to infinite sequences in various ways, e.g.
Levin (1984).

Then we can characterize K-triviality as having no information
about other sequences (Hirschfeldt and R.).

Theorem
A real y is K-trivial if and only if for all x, I (y , x) <∞.



Positive Entropy
Can we extract information/randomness?

Sinai’s Theorem
Any ergodic system with positive entropy has a Bernoulli factor.

Say a real x has positive entropy if lim infn K (x �n)/n > 0.

Question
Given a real of positive entropy, can we effectively compute a
Martin-Löf random real from it?

• Note that it would be enough to compute a µ-random real,
where µ is a Bernoulli measure, since every Bernoulli random
real can be effectively transformed into a L-random real (e.g.
using von Neumann’s trick).



Positive Entropy
The standard examples

Three examples – all compute a Martin-Löf random real

• Let 0 < r < 1 rational. Given a Martin-Löf random real x ,
define xr by inserting 0 with density 0. Then
lim infn K (xr �n)/n = r .

• If µp is a Bernoulli measure with bias p ∈ Q ∩ [0, 1], then for
any µp-random real x , lim infn K (xr �n)/n = h(µp).

• Let U be a universal, prefix-free machine. Given a computable
real number 0 < s ≤ 1, the binary expansion of the real
number

Ω(s) =
∑

σ∈dom(U)

2−
|σ|
s

satisfies lim infn K (xr �n)/n = s (Tadaki, 2002)



Positive Entropy
Hausdorff measures and dimension

Let h : N→ N be recursive, non-decreasing, unbounded.

Theorem
For any x ∈ 2N, the following are equivalent.

(i) For all n, K (x �n) ≥ h(n).

(ii) x is Hh-random.

This yields that a real has positive entropy if and only if it has
positive effective Hausdorff dimension, in fact (Ryabko,
Mayordomo)

dim1
H x = lim inf

n

K (x �n)

n
.

Relation to Kamae entropy (Brudno, 1984)

lim sup
n

K (x �n)

n
≤ h(x).



Positive Entropy
Entropy implies randomness

Using techniques from geometric measure theory (capacities,
Frostman’s Lemma) along with methods from recursion theory
(basis results for Π0

1 sets), one can show that positive entropy
implies randomness.

Theorem
If dim1

H x > s > 0, then there exists a probability measure µ such
that x is µ-random and for all σ,

µ(Nσ) ≤ c2−|σ|s

However, this yields no progress on the extractability problem.



Positive Entropy
Strong reducibilities

Many-one reducibility

Let µp be a computable Bernoulli measure with bias p. If x is
µp-random, then

y ≤m x ⇒ dim1
H y ≤ h(µp).

R. and Terwijn (2004)

Weak truth-table reducibility

For each rational α, 0 ≤ α ≤ 1, there is a real x ≤wtt ∅′ such that

dim1
H x = α and (∀y ≤wtt x) dim1

H y ≤ α.

Nies and R. (2006)



Positive Entropy
Dnr functions

Definition
A function f is diagonally nonrecursive (dnr) if for all n,
f (n) 6= ϕn(n).

Kjos-Hanssen, Merkle, and Stephan (2006) revealed an interesting
connection between entropy and dnr functions.

Theorem

• A real x tt-computes a dnr function iff x is Hh-random for a
recursive, non-decreasing, unbounded h.

• A real x T-computes a dnr function iff x is Hh-random for
some h ≤T x.



Positive Entropy
A minimal degree of positive entropy

Theorem
There exists a minimal dnr degree. (Kumabe)

Kumabe’s construction uses bushy trees in Baire space.

Recently, Greenberg and Miller were combine such trees with the
Kjos-Hanssen-Merkle-Stephan correspondance to prove a
non-extractability result.

Theorem
There exists a minimal Turing degree that contains a real of
entropy 1.

• Note that no Martin-Löf random real can have this property,
since every recursive splitting yields two relatively random
(and hence T-incomparable) halves.



Positive Entropy


