On Hierarchies of Randomness Tests

Jan Reimann and Frank Stephan

Universität Heidelberg National University of Singapore

http://math.uni-heidelberg.de/logic/reimann/lectures.html

Informal: Random sets cannot be captured by effective tests succeeding on sets of measure **0**.

Idea of Formalization: Let $\rho(\mathbf{x}) = 2^{-|\mathbf{x}|}$. An effective way to generate a class **C** of measure **r** is to enumerate a set $\tilde{\mathbf{C}} = {\mathbf{x}_0, \mathbf{x}_1, \ldots}$ of strings such that

- $\rho(\tilde{C}) = \rho(\mathbf{x_0}) + \rho(\mathbf{x_1}) + \rho(\mathbf{x_2}) + \ldots = \mathbf{r};$
- $C = \{A : \exists n (x_n \sqsubset A)\}.$

Martin-Löf Test: A is covered by a test given by a uniformly r.e. family V_0, V_1, \ldots such that every V_i contains a prefix of A and $\rho(V_i) = < 2^{-i}$.

Solovay Test: A is covered by a test given by an r.e. set W of strings such that $\rho(W) < \infty$ and W contains infinitely many prefixes of A.

General idea: Amount of information needed to describe effectively a string.

Prefix-Free Complexity: $H(x) = min\{|p| : U(p) = x\}$.

Based on universal prefix-free machine U

Prefix-free: If $\mathbf{p} \prec \mathbf{q}$ and $\mathbf{U}(\mathbf{p})$ defined then $\mathbf{U}(\mathbf{q})$ undefined.

Universal: Machine which cannot be improved much. For every further prefix-free machine V the best program for any input can only be constantly shorter as the corres- ponding program for U. That is, U satisfies the formula

 $\forall \mathsf{V} \exists \mathsf{c} \forall \mathsf{p} \exists \mathsf{q} \, [\mathsf{V}(\mathsf{p}) \text{ defined } \Rightarrow \mathsf{U}(\mathsf{q}) = \mathsf{V}(\mathsf{p}) \land |\mathsf{q}| \leq |\mathsf{p}| + \mathsf{c}].$

Remark: The original version of Kolmogorov complexity as introduced by Kolmogorov and Solomonoff does not request the machine to be prefix-free. Both versions are widely studied.

Theorem [Martin-Löf, Schnorr, Solovay]

A set **A** is random iff one of the following equivalent conditions holds:

- A is not covered by any Martin-Löf test;
- A is not covered by any Solovay test;
- $\forall^{\infty} n \left(\mathsf{H}(\mathsf{A}(0)\mathsf{A}(1) \dots \mathsf{A}(n)) \geq n+1 \right).$

Characterizations based on Lebesgue measure and its properties. Tadaki as well as Calude, Staiger and Terwijn propose to use other measure functions ρ in order to investigate various degrees of randomness.

- What about ρ(x) = 2^{-r·|x|} for some r strictly between 0 and 1? Should other measure functions be considered?
- How to reformulate the randomness tests?
- Which connections are between these tests?

Measure Function

All: $\exists \mathbf{p} < \mathbf{1} \forall \mathbf{x}, \mathbf{a} ((\rho(\mathbf{x}\mathbf{a}) < \mathbf{p} \cdot \rho(\mathbf{x})) \land (\rho(\mathbf{x}) \le \rho(\mathbf{x}\mathbf{0}) + \rho(\mathbf{x}\mathbf{1}))).$ Unbounded: $\exists \mathbf{q} < \mathbf{1} \forall \mathbf{x} (\rho(\mathbf{x}) < \mathbf{q} \cdot (\rho(\mathbf{x}\mathbf{0}) + \rho(\mathbf{x}\mathbf{1}))).$ Length-Independent: $\forall \mathbf{x}, \mathbf{y} (|\mathbf{x}| = |\mathbf{y}| \Rightarrow \rho(\mathbf{x}) = \rho(\mathbf{y})).$

One can adapt the various characterizations for randomness to the measure function ρ .

Question [Calude, Staiger and Terwijn 2005] If $\rho(\mathbf{x}) = \mathbf{2}^{-\mathbf{r} \cdot |\mathbf{x}|}$ for some $\mathbf{r} < \mathbf{1}$, do the various notions of ρ -randomness coincide?

Calude, Staiger and Terwijn gave several formalizations and showed that they coincide with three notions for which it remained open whether they are equal.

A is Martin-Löf ρ -random if there is no uniformly r.e. family V_0, V_1, \ldots of sets such that, for all i, V_i contains a prefix of A and $\rho(V_i) < 2^{-i}$.

A is strongly Martin-Löf ρ -random if there is no uniformly r.e. family V_0, V_1, \ldots of sets such that, for all i, V_i contains a prefix of A and $\rho(W) < 2^{-i}$ for every prefix-free $W \subseteq V_i$.

A is Solovay ρ -random if there is no r.e. set W of strings containing infinitely many prefixes of A with $\rho(W) < \infty$.

A is weakly Chaitin ρ -random if

 $\exists \mathsf{c} \forall \mathsf{n} \left(\rho(\mathsf{A}(0)\mathsf{A}(1) \dots \mathsf{A}(\mathsf{n})) \geq 2^{-\mathsf{H}(\mathsf{A}(0)\mathsf{A}(1) \dots \mathsf{A}(\mathsf{n})) - \mathsf{c}} \right).$

A is strongly Chaitin ρ -random if $\forall c \forall^{\infty} n \left(\rho(A(0)A(1) \dots A(n)) \ge 2^{c-H(A(0)A(1)\dots A(n))} \right).$ Theorem [Calude, Staiger, Terwijn 2005] Every Solovay ρ -random set is strongly Chaitin ρ -random.

Proof: Let **A** be not strongly Chaitin ρ -random. There is constant **c** such that

 $\exists^{\infty} n \left(\rho(\mathsf{A}(0)\mathsf{A}(1) \dots \mathsf{A}(n)) < 2^{\mathsf{c}-\mathsf{H}(\mathsf{A}(0)\mathsf{A}(1) \dots \mathsf{A}(n))} \right).$

Let $\mathbf{W} = {\mathbf{x} : \rho(\mathbf{x}) < \mathbf{2^{c-H(x)}}}$. Note that $\rho(\mathbf{W}) < \mathbf{2^{c}}$. W witnesses that A is not Solovay ρ -random.

Theorem [Calude, Staiger, Terwijn 2005] Every strongly Chaitin ρ -random set is Solovay ρ -random.

Idea: Given a Solovay ρ -test **W** covering **A**, one can use the Kraft-Chaitin theorem to show that there is a constant **c** such that every $\mathbf{x} \in \mathbf{W}$ satisfies $\rho(\mathbf{x}) < 2^{\mathbf{c}-\mathbf{H}(\mathbf{x})}$.

Theorem [Tadaki 2002 for $\rho(\mathbf{x}) = \mathbf{2}^{-\mathbf{r} \cdot |\mathbf{x}|}$; Reimann 2004] If ρ is unbounded and length-independent then the Martin-Löf ρ -random sets coincide with the weakly Chaitin ρ -random sets.

One Direction

If **A** is not weakly Chaitin random then **A** is covered by the Martin-Löf ρ -test

$$\mathbf{V_n} = \{\mathbf{x} : \rho(\mathbf{x}) < \mathbf{2^{-n-H(x)}}\}$$

where, for all **n**, $\rho(\mathbf{V_n}) < 2^{-n}$ and $\mathbf{V_n}$ contains a prefix of **A**.

Conjecture

Equivalence holds also for all measure-functions.

Theorem [Cai, Hartmanis 1994, Lutz 2001 for $\rho(\mathbf{x}) = 2^{-\mathbf{r} \cdot |\mathbf{x}|}$] If ρ is unbounded then there is a set **A** which is weakly Chaitin ρ -random but not strongly Chaitin ρ -random.

Proof

There is **c** such that for all **x** there are $\mathbf{y}, \mathbf{z} \in \{\mathbf{0}, \mathbf{1}\}^{\mathsf{c}}$ with

- $H(xy) \log(\rho(xy)) > H(x) \log(\rho(x)) + 1;$
- $H(xz) \log(\rho(xz)) < H(x) \log(\rho(x)) 1.$

So one can build by finite extension an infinite sequence **A** such that $H(x) - log(\rho(x))$ is almost the same for all prefixes of **A**. This set **A** is weakly Chaitin ρ -random but not strongly Chaitin ρ -random.

This construction needs unboundedness as the example of the standard measure-function $\rho(\mathbf{x}) = 2^{-|\mathbf{x}|}$ shows.

Proposition

Every Solovay ρ -random set is Martin-Löf ρ -random.

Idea

An array defining a Martin-Löf ρ -test covering **A** can also be viewed as a Solovay ρ -test covering **A**.

Theorem

If ρ is unbounded and length-independent then there is a set **A** which is Martin-Löf ρ -random but not Solovay ρ -random.

Proof

Under the constraints given in the theorem the notion Martin-Löf ρ -random equals to weakly Chaitin ρ -random and the notion Solovay ρ -random equals to strong Chaitin ρ -random. Furthermore, the two Chaitin ρ -randomness notions are different.

Theorem

Every strongly Martin-Löf ρ -random set is Solovay ρ -random.

Construction: Let
$$\mathbf{W}_{\mathbf{x}}^+ = \{\mathbf{x}\mathbf{y} : |\mathbf{y}| > \mathbf{0} \land \mathbf{x}\mathbf{y} \in \mathbf{W}\}.$$

If $\forall n \exists x \sqsubset A (x \in W \land \rho(x) \cdot 2^n < \rho(W_x^+))$

Then
$$V_n = \{x \in W : \rho(x) \cdot 2^n < \rho(W_x^+)\}$$

Else let q be a rational such that

- $\exists^{\infty} \mathbf{x} \sqsubset \mathbf{A} \left(\rho(\mathbf{x}) < \mathbf{q} \cdot \rho(\mathbf{W}^{+}_{\mathbf{x}}) \right);$
- $\exists^{\infty} \mathbf{x} \sqsubset \mathbf{A} \left(\rho(\mathbf{x}) < (\mathbf{q} + \mathbf{0.5}) \cdot \rho(\mathbf{W}_{\mathbf{x}}^{+}) \right).$

One enumerates a subset **T** of **W** which satisfies the first condition for infinitely many prefixes of **A** and the second for all **x**. Let $\mathbf{S} = \{\mathbf{x} \in \mathbf{T} : \rho(\mathbf{x}) < \mathbf{q} \cdot \rho(\mathbf{T}_{\mathbf{x}}^+)\}$ and

$$V_n = \{x \in T: |\{y \sqsubseteq x: y \in T\}| > m_n\}$$

(日) (日) (日) (日) (日) (日) (日) (日)

for a suitable m_n computed from n.

Theorem

Let ρ be length-independent and unbounded. \exists Solovay ρ -random set **A** which is not strongly Martin-Löf ρ -random.

Idea: Let $\mathbf{r}(\mathbf{x}) = -\log(\rho(\mathbf{x}))$ and $\mathbf{I}_0, \mathbf{I}_1, \ldots$ be a recursive sequence of disjoint intervals such that

 $\forall i\,\exists j\in I_i\,\forall k\,(|\{x\in\{0,1\}^j:H(x)\leq k\}|<2^{k-2i}).$

Then construct a set A such that, up to a constant c,

 $\forall i \forall j \in I_i \left(\mathsf{H}(\mathsf{A}(0)\mathsf{A}(1) \ldots \mathsf{A}(j-1)) = \mathsf{r}(0^j) + i \right).$

By construction **A** is Solovay ρ -random. Let

 $W_i = \{ x \in \{0,1\}^{max(I_{i+c})} : \forall y \sqsubseteq x \left(H(y) \le r(y) + i + 2c \right) \}.$

Although W_0, W_1, \ldots is not yet a strong Martin-Löf ρ -test, one can modify it to one which still covers **A**.

For an unbounded length-independent measure-function ρ , the hierarchy of randomness-notions has three levels:

- Strongly Martin-Löf *ρ*-random;
- Solovay *ρ*-random, strongly Chaitin *ρ*-random;
- Martin-Löf ρ -random, weakly Chaitin ρ -random.

The separation of the second and third levels and the equivalence of the two notions on the third level is up to now only proven for length-independent measure functions.

All separation results need unbounded measure functions.