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Why Effectivize Measure

Can explicitly consider typical elements (with respect to
measure).

Allows to define random elements.

Can apply measure theory to countable sets/spaces.
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Ways to Effectivize Measure

Effectivizing Measure =̂ devising an effective class of tests. Each
test determines a class of nullsets.

Martin-Löf: Tests must be effectively Gδ.

Schnorr: Test must have uniformly computable measure.

Martingales (Schnorr/Lutz): Nullsets are those against which
a computable martingale wins.

Semimeasures/complexity: Elements of nullsets must be
compressible.
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Hausdorff Measures

Definition

Given s > 0, A ⊆ {0, 1}N has s-dimensional Hausdorff
measure 0, Hs(A) = 0, if for all n there exists Cn ⊆ {0, 1}∗

such that

A ⊆
⋃

σ∈Cn

Ext(σ) ∧
∑

σ∈Cn

2−|σ|s 6 2−n.

So for s = 1, one obtains Lebesgue measure on {0, 1}N.
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Hausdorff Dimension

Definition

The Hausdorff dimension of A is defined as

dimH(A) = inf{s > 0 : Hs(A) = 0}

Hs(A)

sdimH(A)
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Famous examples

Mandelbrot sets – dimH = 2
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Famous examples

Koch snowflake – dimH = log 4/ log 3
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Famous examples

Cantor set – dimH = log 2/ log 3
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Effective Hausdorff Measures

Definition

Let s > 0 be rational.

A Martin-Löf s-test (ML-s-test) is a uniformly computable
sequence (Vn)n∈N of c.e. sets of strings such that for all n,∑

σ∈Vn

2−|σ|s 6 2−n.

A test (Vn) covers a real X if X ∈
⋂

n Ext(Vn)

X is ML-s-random if it is not covered by ML-s-test.

A Schnorr s-test is a ML-s-test (Vn) such that the real
number

∑
σ∈Vn

2−|σ|s is uniformly computable.

X is Schnorr-s-random if it is not covered by Schnorr-s-test.
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Effective Hausdorff Dimension

We can now easily define effective versions of Hausdorff dimension.
These can be considered as degrees of randomness.

Definition

Let X be a real.

(Lutz) The effective Hausdorff dimension dim1
H X is defined

as

dim1
H X = inf{s ∈ Q+ : {X } is covered by a ML-s-test}.

The Schnorr Hausdorff dimension dimS
H X is defined as

dimS
H X = inf{s ∈ Q+ : {X } is covered by a Schnorr-s-test}.
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Martingales and Computable Randomness

A martingale is a function d : {0, 1}∗ → R+
0 such that for all

strings σ,

d(σ) =
d(σ0) + d(σ1)

2
.

For s > 0, a martingale is s-successful on a real X if
lim supn d(X �n)/2(1−s)n = ∞.

A real X is computably s-random if no computable
martingale d is s-successful on X .

Known: Computably s-random ⇒ Schnorr s-random. But
there are Schnorr 1-random sequences not computably
1-random (Wang).
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Dimension and Martingales

Theorem

For any real X ∈ {0, 1}N,

dimS
H X = inf{s ∈ Q : ∃ computable d s-succ. on X }.

So for Schnorr Hausdorff dimension it does not matter whether one
works with computable martingales or Schnorr tests.
Schnorr dimension equals computable dimension.
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Machine Characterizations

Given a (prefix-free) Turing machine M , the M-complexity
of a string x is defined as

KM(x) = min{|p| : M(p) = x},

where KM(x) = ∞ if there does not exist a p ∈ {0, 1}∗ such
that M(p) = x .

For a universal prefix-free TM U, K := KU is optimal up to a
fixed constant, i.e. for all prefix-free M exists cM s.t.
∀x(K(x) 6 KM(x) + cM).

The effective dimension of a real equals its lower asymptotic
complexity:

dim1
H X = lim inf

n

K(X �n)

n
.

(Shown independently by Ryabko and Mayordomo.)
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Machine Characterizations

Call a prefix free machine M is computable if
∑

w∈dom(M) 2−|w | is
a computable real number.

Theorem

For any sequence A it holds that

dimS
H A = inf

M

{
lim inf
n→∞ KM(A�n)

n

}
,

where the infimum is taken over all computable prefix free
machines M.

A similar characterization was obtained by Hitchcock.
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Packing Dimension

Packing measures (Tricot) are dual to Hausdorff measures:
Instead of covering a set with as few balls as possible, try to
‘stuff’ it with as many disjoint balls as possible.

The corresponding dimension notion, Packing dimension
dimP, can be effectivized (dim1

P) using a martingale
characterization (Athreya, Hitchcock, Lutz, and Mayordomo).

The effective packing dimension of a real equals its upper
asymptotic complexity (Athreya et al):

dim1
P X = lim sup

n

K(X �n)

n
.

Schnorr version:

dimS
P A := inf

M

{
lim sup
n→∞

KM(A�n)

n

}
.
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Recursively Enumerable Sets

The main randomness notions (Martin-Löf, computable, and
Schnorr) are powerful enough to render r.e. sets trivial, i.e. no
r.e. set is random.

In fact, they are not even close to random: For any r.e. set
A ⊆ N,

K(A�n) 6 k log n + c .

(Barzdins’ Theorem)

With respect to Schnorr dimension, the situation is a little
different.

Theorem

1 Every r.e. set A ⊆ N has Schnorr Hausdorff dimension zero.

2 There exists an r.e. set A ⊆ N such that dimS
P A = 1.
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R.E. Sets And Irregularity

Theorem

1 Every r.e. set A ⊆ N has Schnorr Hausdorff dimension zero.

2 There exists an r.e. set A ⊆ N such that dimS
P A = 1.

Tricot defined a set to be regular if its Hausdorff and packing
dimension coincide.

Hence, the class of r.e. sets contains examples of irregular
reals with respect to Schnorr dimension.
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