Effectivizing Measure	Hausdorff Measures	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets

Schnorr Dimension

Rod Downey¹ Wolfgang Merkle² Jan Reimann²

¹School of Mathematics, Statistics, and Computer Science, Victoria University of Wellington ²Institut für Informatik, Universität Heidelberg

June 11, 2005

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Effectivizing Measure ●○	Hausdorff Measures	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets 00
Why Effect	ivize Measu	re		

Can explicitly consider typical elements (with respect to measure).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Allows to define **random** elements.
- Can apply measure theory to **countable** sets/spaces.

Effectivizing Measure ⊙●	Hausdorff Measures 00000	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets 00
Ways to Ef	fectivize Me	easure		

Effectivizing Measure $\hat{=}$ devising an **effective** class of **tests**. Each test determines a class of nullsets.

- **Martin-Löf**: Tests must be **effectively** G_{δ} .
- **Schnorr**: Test must have **uniformly computable** measure.
- Martingales (Schnorr/Lutz): Nullsets are those against which a computable martingale wins.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Semimeasures/complexity: Elements of nullsets must be compressible.

Effectivizing Measure	Hausdorff Measures	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets
	0000			
Hausdorff M	Accurac			

Definition

Given s > 0, A ⊆ {0, 1}^N has s-dimensional Hausdorff measure 0, H^s(A) = 0, if for all n there exists C_n ⊆ {0, 1}* such that

$$\mathcal{A} \subseteq \bigcup_{\sigma \in C_n} \mathsf{Ext}(\sigma) \land \sum_{\sigma \in C_n} 2^{-|\sigma|s} \leqslant 2^{-n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

• So for s = 1, one obtains **Lebesgue measure** on $\{0, 1\}^{\mathbb{N}}$.

Effectivizing Measure	Hausdorff Measures ○●000	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets 00
Hausdorff D	Dimension			

Definition

The Hausdorff dimension of A is defined as

$$\dim_{\mathsf{H}}(A) = \inf\{s \ge 0 : \, \mathcal{H}^{s}(A) = 0\}$$

Effectivizing Measure	Hausdorff Measures ○○●○○	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets 00
Eamous av	malac			

Famous examples

 $\mathsf{Mandelbrot\ sets}-\mathsf{dim}_\mathsf{H}=2$

Effectivizing Measure	Hausdorff Measures ○○○●○	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets 00
Famous examples				

Koch snowflake – $dim_{H} = \log 4 / \log 3$

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Effectivizing Measure	Hausdorff Measures ○○○○●	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets 00
Famous exa	amples			

 $Cantor \; set - dim_H = log \, 2/ \, log \, 3$

		_		_
_				
-				
			88 88	

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Effectivizing Measure	Hausdorff Measures	Effectivzing Hausdorff Measure ●○	Properties of Dimension	R.E. Sets 00
Effective Hausdorff Measures				

Definition

- Let $s \ge 0$ be rational.
 - A Martin-Löf s-test (ML-s-test) is a uniformly computable sequence (V_n)_{n∈ℕ} of c.e. sets of strings such that for all n,

$$\sum_{\sigma\in V_n} 2^{-|\sigma|s} \leqslant 2^{-n}.$$

- A test (V_n) covers a real X if $X \in \bigcap_n \operatorname{Ext}(V_n)$
- X is ML-s-random if it is not covered by ML-s-test.
- A Schnorr s-test is a ML-s-test (V_n) such that the real number $\sum_{\sigma \in V_n} 2^{-|\sigma|s}$ is uniformly computable.
- X is **Schnorr**-*s*-**random** if it is not covered by Schnorr-*s*-test.

Effectivizing Measure	Hausdorff Measures	Effectivzing Hausdorff Measure ○●	Properties of Dimension	R.E. Sets 00
Effective Ha	ausdorff Din			

We can now easily define effective versions of Hausdorff dimension. These can be considered as **degrees of randomness**.

Definition

```
Let X be a real.
```

 (Lutz) The effective Hausdorff dimension dim¹_H X is defined as

 $\dim_{\mathsf{H}}^{1} X = \inf\{s \in \mathbb{Q}^{+} : \{X\} \text{ is covered by a } \mathsf{ML}\text{-}s\text{-test}\}.$

• The **Schnorr Hausdorff dimension** dim^S_H X is defined as

 $\dim_{\mathsf{H}}^{\mathsf{S}} X = \inf\{s \in \mathbb{Q}^+ : \{X\} \text{ is covered by a Schnorr-s-test}\}.$

A martingale is a function d : {0, 1}* → ℝ₀⁺ such that for all strings σ,

$$d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}$$

- For s≥ 0, a martingale is s-successful on a real X if lim sup_n d(X ↾_n)/2^{(1-s)n} = ∞.
- A real X is computably s-random if no computable martingale d is s-successful on X.
- Known: Computably s-random ⇒ Schnorr s-random. But there are Schnorr 1-random sequences not computably 1-random (Wang).

		alaa		
00	00000	00	0000	00
Effectivizing Measure	Hausdorff Measures	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets

Dimension and Martingales

Theorem

For any real $X \in \{0, 1\}^{\mathbb{N}}$,

 $\dim_{\mathsf{H}}^{\mathsf{S}} X = \inf\{s \in \mathbb{Q} : \exists \text{ computable } d \text{ s-succ. on } X\}.$

So for Schnorr Hausdorff dimension it does not matter whether one works with computable martingales or Schnorr tests. Schnorr dimension equals computable dimension.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 Given a (prefix-free) Turing machine M, the M-complexity of a string x is defined as

$$K_M(x) = \min\{|p|: M(p) = x\},\$$

where $K_M(x) = \infty$ if there does not exist a $p \in \{0, 1\}^*$ such that M(p) = x.

- For a universal prefix-free TM U, K := K_U is optimal up to a fixed constant, i.e. for all prefix-free M exists c_M s.t. ∀x(K(x) ≤ K_M(x) + c_M).
- The effective dimension of a real equals its lower asymptotic complexity:

$$\dim_{\mathsf{H}}^{1} X = \liminf_{n} \frac{\mathsf{K}(X \upharpoonright_{n})}{n}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Shown independently by Ryabko and Mayordomo.)

Effectivizing Measure	Hausdorff Measures 00000	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets 00			
Machine Characterizations							

Call a prefix free machine *M* is computable if $\sum_{w \in \text{dom}(M)} 2^{-|w|}$ is a computable real number.

Theorem

For any sequence A it holds that

$$\dim_{\mathsf{H}}^{\mathsf{S}} A = \inf_{M} \left\{ \liminf_{n \to \infty} \frac{\mathsf{K}_{M}(A \upharpoonright_{n})}{n} \right\},$$

where the infimum is taken over all computable prefix free machines M.

A similar characterization was obtained by Hitchcock.

Effectivizing Measure	Hausdorff Measures	Effectivzing Hausdorff Measure	Properties of Dimension 0000●	R.E. Sets 00
Packing Dir	mension			

- Packing measures (Tricot) are dual to Hausdorff measures: Instead of covering a set with as few balls as possible, try to 'stuff' it with as many disjoint balls as possible.
- The corresponding dimension notion, Packing dimension dim_P, can be effectivized (dim¹_P) using a martingale characterization (Athreya, Hitchcock, Lutz, and Mayordomo).
- The effective packing dimension of a real equals its upper asymptotic complexity (Athreya et al):

$$\dim_{\mathsf{P}}^{1} X = \limsup_{n} \frac{\mathsf{K}(X \upharpoonright_{n})}{n}.$$

Schnorr version:

$$\dim_{\mathsf{P}}^{\mathsf{S}} A := \inf_{M} \left\{ \limsup_{n \to \infty} \frac{\mathsf{K}_{M}(A \upharpoonright_{n})}{n} \right\}.$$

Recursively	Enumerable	Sets		
Effectivizing Measure	Hausdorff Measures 00000	Effectivzing Hausdorff Measure	Properties of Dimension	R.E. Sets ●0

- The main randomness notions (Martin-Löf, computable, and Schnorr) are powerful enough to render r.e. sets trivial, i.e. no r.e. set is random.
- In fact, they are not even close to random: For any r.e. set $A \subseteq \mathbb{N}$,

 $\mathsf{K}(A\!\upharpoonright_n)\leqslant k\log n+c.$

(Barzdins' Theorem)

 With respect to Schnorr dimension, the situation is a little different.

Theorem

1 Every r.e. set $A \subseteq \mathbb{N}$ has Schnorr Hausdorff dimension zero.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2 There exists an r.e. set $A \subseteq \mathbb{N}$ such that dim^S_P A = 1.

R.E. Sets And Irregularit

Theorem

- **1** Every r.e. set $A \subseteq \mathbb{N}$ has Schnorr Hausdorff dimension zero.
- **2** There exists an r.e. set $A \subseteq \mathbb{N}$ such that $\dim_{\mathbf{P}}^{\mathsf{S}} A = 1$.
- Tricot defined a set to be regular if its Hausdorff and packing dimension coincide.
- Hence, the class of r.e. sets contains examples of irregular reals with respect to Schnorr dimension.