Hausdorff Dimension, Randomness, and Entropy

Jan Reimann

Institut für Informatik, Universität Heidelberg

• Caratheodory-Hausdorff construction on metric spaces: *X* metric space $E \subseteq X$, metric $d, h : \mathbb{R} \to \mathbb{R}$ non-decreasing, continuous on the right with h(0) = 0, $\delta > 0$.

- Caratheodory-Hausdorff construction on metric spaces: *X* metric space $E \subseteq X$, metric $d, h : \mathbb{R} \to \mathbb{R}$ non-decreasing, continuous on the right with h(0) = 0, $\delta > 0$.
- Define set function

$$\mathcal{H}^{h}_{\delta}(E) = \inf \left\{ \sum_{i} h(d(U_{i})) : E \subseteq \bigcup_{i} U_{i}, \ d(U_{i}) \leq \delta \right\}$$

- Caratheodory-Hausdorff construction on metric spaces: *X* metric space $E \subseteq X$, metric $d, h : \mathbb{R} \to \mathbb{R}$ non-decreasing, continuous on the right with h(0) = 0, $\delta > 0$.
- Define set function

$$\mathcal{H}^{h}_{\delta}(E) = \inf \left\{ \sum_{i} h(d(U_{i})) : E \subseteq \bigcup_{i} U_{i}, \ d(U_{i}) \leq \delta \right\}$$

• Letting $\delta \rightarrow 0$ yields an (outer) measure.

- Caratheodory-Hausdorff construction on metric spaces: *X* metric space $E \subseteq X$, metric $d, h : \mathbb{R} \to \mathbb{R}$ non-decreasing, continuous on the right with h(0) = 0, $\delta > 0$.
- Define set function

$$\mathcal{H}^{h}_{\delta}(E) = \inf \left\{ \sum_{i} h(d(U_{i})) : E \subseteq \bigcup_{i} U_{i}, \ d(U_{i}) \leq \delta \right\}$$

- Letting $\delta \rightarrow 0$ yields an (outer) measure.
- The *h*-dimensional Hausdorff measure \mathcal{H}^h is defined as

$$\mathcal{H}^h(E) = \lim_{\delta \to 0} \mathcal{H}^h_\delta(E)$$

Properties of Hausdorff measures

• \mathcal{H}^h is Borel regular:

all Borel sets *B* are measurable, i.e.

$$(\forall A \subseteq X) \mathcal{H}^h(A) = \mathcal{H}^h(A \cap B) + \mathcal{H}^h(A \setminus B),$$

and for all $A \subseteq X$ there is a Borel set $B \subseteq A$ such that

$$\mathcal{H}^h(B) = \mathcal{H}^h(A).$$

Properties of Hausdorff measures

• \mathcal{H}^h is Borel regular:

all Borel sets *B* are measurable, i.e.

$$(\forall A \subseteq X) \mathcal{H}^h(A) = \mathcal{H}^h(A \cap B) + \mathcal{H}^h(A \setminus B),$$

and for all $A \subseteq X$ there is a Borel set $B \subseteq A$ such that

$$\mathcal{H}^h(B) = \mathcal{H}^h(A).$$

Solution For X = ℝⁿ (Euclidean) and s = n, Hⁿ yields the usual Lebesgue measure λ (up to a multiplicative constant).

From measure to dimension

▲ An obvious choice for *h* is $h(x) = x^s$ for $s \ge 0$.
We denote the associated Hausdorff measure by \mathcal{H}^s .

From measure to dimension

- An obvious choice for *h* is $h(x) = x^s$ for $s \ge 0$.
 We denote the associated Hausdorff measure by \mathcal{H}^s .
- Important property: For $0 \le s < t < \infty$ und $E \subseteq X$,

$$\mathcal{H}^{s}(E) < \infty \implies \mathcal{H}^{t}(E) = 0,$$

 $\mathcal{H}^{t}(E) > 0 \implies \mathcal{H}^{s}(E) = \infty.$

From measure to dimension

- An obvious choice for *h* is $h(x) = x^s$ for $s \ge 0$.
 We denote the associated Hausdorff measure by \mathcal{H}^s .
- Important property: For $0 \le s < t < \infty$ und $E \subseteq X$,

$$\mathcal{H}^{s}(E) < \infty \implies \mathcal{H}^{t}(E) = 0,$$

 $\mathcal{H}^{t}(E) > 0 \implies \mathcal{H}^{s}(E) = \infty.$

The Hausdorff dimension of a set E is defined as

$$\dim_{\mathrm{H}}(E) = \inf\{s \ge 0 : \mathcal{H}^{s}(E) = 0\}$$
$$= \sup\{t \ge 0 : \mathcal{H}^{t}(E) = \infty\}$$

Famous examples

Mandelbrot sets – $\dim_H = 2$

Famous examples

Koch snowflake – $\dim_H = \log 4 / \log 3$

Famous examples

		•••			
	 		11 11		
	 		1111		

The Cantor space

Solution Cantor space: 2^{ω} , space of all infinite binary sequences.

The Cantor space

- **Solution** Cantor space: 2^{ω} , space of all infinite binary sequences.
- Metric given by

$$d(\alpha, \beta) = 2^{-N}$$
 where $N = \min\{n : \alpha(n) \neq \beta(n)\}.$

The Cantor space

- **Solution** Cantor space: 2^{ω} , space of all infinite binary sequences.
- Metric given by

$$d(\alpha, \beta) = 2^{-N}$$
 where $N = \min\{n : \alpha(n) \neq \beta(n)\}.$

• Open sets in Cantor space are unions of cylinders, induced by a finite string $\sigma \in 2^{<\omega}$.

$$[\sigma] := \{ \alpha : \sigma \sqsubset \alpha \}.$$

Diameter $d[\sigma] = 2^{-|\sigma|}$.

Hausdorff dimension in Cantor space

• \mathcal{H}^{s} -nullsets in 2^{ω} :

 $\mathcal{A} \subseteq 2^{\omega}$ has s-dimensional Hausdorff measure 0 iff

$$(\forall n \in \omega) \ (\exists C_n \subseteq 2^{<\omega}) \ \mathcal{A} \subseteq \bigcup_{\sigma \in C_n} [\sigma] \land \sum_{\sigma \in C_n} 2^{-|\sigma|s} \le 2^{-n}.$$

Hausdorff dimension in Cantor space

• \mathcal{H}^{s} -nullsets in 2^{ω} :

 $\mathcal{A} \subseteq 2^{\omega}$ has s-dimensional Hausdorff measure 0 iff

$$(\forall n \in \omega) \ (\exists C_n \subseteq 2^{<\omega}) \ \mathcal{A} \subseteq \bigcup_{\sigma \in C_n} [\sigma] \land \sum_{\sigma \in C_n} 2^{-|\sigma|s} \le 2^{-n}.$$

• Effectivization: Require C_n to be effectively given, e.g. as a uniformly recursive family of r.e. sets of strings.

An example from recursion theory

Theorem: [Sacks]

The upper Turing cone of a non-recursive set has Lebesgue measure 0 (majority voting principle).

An example from recursion theory

Theorem: [Sacks]

The upper Turing cone of a non-recursive set has Lebesgue measure 0 (majority voting principle).

Theorem:

$$(\forall \alpha \in 2^{\omega}) \dim_{\mathrm{H}}(\alpha^{\leq_{\mathrm{T}}}) = 1.$$

An example from recursion theory

Theorem: [Sacks]

The upper Turing cone of a non-recursive set has Lebesgue measure 0 (majority voting principle).

Theorem:

$$(\forall \alpha \in 2^{\omega}) \dim_{\mathrm{H}}(\alpha^{\leq_{\mathrm{T}}}) = 1.$$

■ Mass distribution principle: $A \subseteq 2^{\omega}$, µ measure on 2^{ω} , µ(A) > 0. If there are *c*, *s* such that

$$\mu[\sigma] \le c2^{-|\sigma|s} = cd[\sigma]^s$$

```
(for all \sigma), then dim<sub>H</sub> \mathcal{A} \geq s.
```

• Lebesgue measure: $\lambda(A) > 0$ implies $\dim_{H}(A) = 1$.

- Lebesgue measure: $\lambda(A) > 0$ implies $\dim_{H}(A) = 1$.
- Monotony: $\mathcal{A} \subseteq \mathcal{B}$ implies $\dim_{\mathrm{H}}(\mathcal{A}) \leq \dim_{\mathrm{H}}(\mathcal{B})$.

- Lebesgue measure: $\lambda(A) > 0$ implies $\dim_{H}(A) = 1$.
- Monotony: $\mathcal{A} \subseteq \mathcal{B}$ implies $\dim_{\mathrm{H}}(\mathcal{A}) \leq \dim_{\mathrm{H}}(\mathcal{B})$.
- **Stability:** For $A_1, A_2, \dots \subseteq 2^{\omega}$ it holds that

$$\dim_{\mathrm{H}}(\bigcup \mathcal{A}_i) = \sup\{\dim_{\mathrm{H}}(\mathcal{A}_i)\}.$$

(Immediately implies that all countable sets have dimension 0.)

• Geometric transformations: If h is Hölder continuous, i.e. if there are constants c, r > 0 for which

 $(\forall \alpha, \beta) d(h(\alpha), h(\beta)) \leq cd(\alpha, \beta)^r,$

then

 $\dim_{\mathrm{H}} h(\mathcal{A}) \leq (1/r) \dim_{\mathrm{H}}(\mathcal{A}).$

• Geometric transformations: If *h* is Hölder continuous, i.e. if there are constants c, r > 0 for which

$$(\forall \alpha, \beta) d(h(\alpha), h(\beta)) \leq cd(\alpha, \beta)^r,$$

then

$$\dim_{\mathrm{H}} h(\mathcal{A}) \leq (1/r) \dim_{\mathrm{H}}(\mathcal{A}).$$

• For r = 1, h is Lipschitz continuous. If h is bi-Lipschitz, then

$$\dim_{\mathrm{H}} h(\mathcal{A}) = \dim_{\mathrm{H}}(\mathcal{A}).$$

Geometric transformations: If h is Hölder continuous, i.e. if there are constants c, r > 0 for which

$$(\forall \alpha, \beta) d(h(\alpha), h(\beta)) \leq cd(\alpha, \beta)^r,$$

then

$$\dim_{\mathrm{H}} h(\mathcal{A}) \leq (1/r) \dim_{\mathrm{H}}(\mathcal{A}).$$

• For r = 1, h is Lipschitz continuous. If h is bi-Lipschitz, then

$$\dim_{\mathrm{H}} h(\mathcal{A}) = \dim_{\mathrm{H}}(\mathcal{A}).$$

• For $\delta = 2^{-n}$, simple δ -covering for $\mathcal{A} \subseteq 2^{\omega}$:

$$A^{[n]} := \{ \alpha \upharpoonright_n : \alpha \in \mathcal{A} \}.$$

• For $\delta = 2^{-n}$, simple δ -covering for $\mathcal{A} \subseteq 2^{\omega}$:

$$A^{[n]} := \{ \alpha \upharpoonright_n : \alpha \in \mathcal{A} \}.$$

Minkowski- or box-counting dimension:

$$\underline{\dim}_{\mathrm{B}}(\mathcal{A}) := \liminf_{n \to \infty} \frac{\log |\mathcal{A}^{[n]}|}{n}.$$

It holds that $\dim_{\mathrm{H}}(\mathcal{A}) \leq \underline{\dim}_{\mathrm{B}}(\mathcal{A})$.

• For $\delta = 2^{-n}$, simple δ -covering for $\mathcal{A} \subseteq 2^{\omega}$:

$$A^{[n]} := \{ \alpha \upharpoonright_n : \alpha \in \mathcal{A} \}.$$

Minkowski- or box-counting dimension:

$$\underline{\dim}_{\mathrm{B}}(\mathcal{A}) := \liminf_{n \to \infty} \frac{\log |\mathcal{A}^{[n]}|}{n}$$

It holds that $\dim_{\mathrm{H}}(\mathcal{A}) \leq \underline{\dim}_{\mathrm{B}}(\mathcal{A})$.

If \mathcal{A} is shift-invariant, $\underline{\dim}_B$ is also called topological entropy, and for closed sets \mathcal{A} it holds that

$$\dim_{\mathrm{H}}(\mathcal{A}) = \underline{\dim}_{\mathrm{B}}(\mathcal{A}).$$

 Given *p* ∈ [0, 1], let μ_p (*p*, 1 − *p*)-Bernoulli measure (product measure on 2[∞] with *P*[1] = *p*, *P*[0] = 1 − *p*). Entropy *H*(μ_p) is defined as

$$H(\mu_p) = -[p \log p + (1-p) \log(1-p)].$$

 Given *p* ∈ [0, 1], let μ_p (*p*, 1 − *p*)-Bernoulli measure (product measure on 2[∞] with *P*[1] = *p*, *P*[0] = 1 − *p*). Entropy *H*(μ_p) is defined as

$$H(\mu_p) = -[p \log p + (1-p) \log(1-p)].$$

• Theorem: [Eggleston] For $p \in [0, 1]$ let

$$\mathcal{B} = \left\{ \alpha \in 2^{\omega} : \lim_{n \to \infty} \frac{|\{i \le n : \alpha(i) = 1\}|}{n} = p \right\}$$

Then

$$\dim_{\mathrm{H}} \mathcal{B} = H(\mu_p).$$

Effective Hausdorff dimension

Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.

Effective Hausdorff dimension

- Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.
- (Let s ≥ 0 be rational.) A ⊆ 2[∞] is Σ₁-H^s null,
 Σ₁⁰-H^s(A) = 0, if there is a recursive sequence (C_n) of r.e. sets such that for each n,

$$\mathcal{A} \subseteq \bigcup_{w \in C_n} [w]$$
 and $\sum_{w \in C_n} 2^{-|w|s} < 2^{-n}$.

Effective Hausdorff dimension

- Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.
- (Let s ≥ 0 be rational.) A ⊆ 2[∞] is Σ₁-H^s null,
 Σ₁⁰-H^s(A) = 0, if there is a recursive sequence (C_n) of r.e. sets such that for each n,

$$\mathcal{A} \subseteq \bigcup_{w \in C_n} [w]$$
 and $\sum_{w \in C_n} 2^{-|w|s} < 2^{-n}$.

Definition of effective Hausdorff dimension is straightforward:

$$\dim_{\mathrm{H}}^{1}(\mathcal{A}) = \inf\{s \geq 0 : \Sigma_{1}^{0} - \mathcal{H}^{s}(\mathcal{A}) = 0\}.$$

Properties of effective dimension

 $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \en$
Properties of effective dimension

- Random sequences: $\Sigma_1^0 \mathcal{H}^1$ corresponds to Martin-Löf's effective measure. A sequence α which is not $\Sigma_1^0 \mathcal{H}^1$ -null is called Martin-Löf-random.

Obviously, if α is ML-random then dim¹_H $\alpha = 1$.

Properties of effective dimension

- Random sequences: $\Sigma_1^0 \mathcal{H}^1$ corresponds to Martin-Löf's effective measure. A sequence α which is not $\Sigma_1^0 \mathcal{H}^1$ -null is called Martin-Löf-random.

Obviously, if α is ML-random then dim¹_H $\alpha = 1$.

Stability: [Lutz] dim¹_H A = sup_{ζ∈A} dim¹_H ζ
 Follows from existence of maximal effective *s*-nulltests,
 i.e. a recursive sequence of r.e. sets {U^s_n}, for which

$$\mathcal{A} \text{ is } \Sigma_1^0 \text{-} \mathcal{H}^s \text{-null} \iff (\forall \alpha \in \mathcal{A}) \ \alpha \in \bigcap_n [U_n^s].$$

Algorithmic entropy

• Kolmogorov complexity: Let U be a universal Turing machine. For a string σ define

$$C(\sigma) = C_U(\sigma) = \min\{|p|: p \in 2^{<\omega}, U(p) = \sigma\},\$$

i.e. $C(\sigma)$ is the length of the shortest *U*-program for σ . (Independent (up to an additiv constant) of the choice of *U*.)

Algorithmic entropy

• Kolmogorov complexity: Let U be a universal Turing machine. For a string σ define

$$C(\sigma) = C_U(\sigma) = \min\{|p|: p \in 2^{<\omega}, U(p) = \sigma\},\$$

i.e. $C(\sigma)$ is the length of the shortest *U*-program for σ . (Independent (up to an additiv constant) of the choice of *U*.)

Variant: prefix-free complexity K. Based on prefix-free Turing-machines – no two converging inputs are prefixes of one another.

Entropy and randomness

Schnorr's Theorem:

α ML-random \Leftrightarrow $(\exists c) (\forall n) K(\alpha \upharpoonright_n) \ge n - c.$

The domain of a prefix-free Turing machine is a prefix-free code.

- The domain of a prefix-free Turing machine is a prefix-free code.
- Kraft-Chaitin Theorem: $\{\sigma_i\}_{i \in \mathbb{N}}$ set of strings, $\{l_i, l_2, ...\}$ sequence of natural numbers ('lengths') such that

$$\sum_{i\in\mathbb{N}}2^{-l_i}\leq 1,$$

then one can construct (primitive recursively) a prefix-free TM *M* and strings $\{\tau_i\}_{i \in \mathbb{N}}$, such that

$$|\tau_i| = l_i$$
 and $M(\tau_i) = \sigma_i$.

• Semimeasure: $m: 2^{<\omega} \rightarrow [0, \infty)$ with

$$\sum_{\sigma \in 2^{<\omega}} m(\sigma) \le 1.$$

• Semimeasure: $m: 2^{<\omega} \rightarrow [0, \infty)$ with

$$\sum_{\sigma \in 2^{<\omega}} m(\sigma) \le 1.$$

• There exists a maximal enumerable semimeasure \tilde{m} , i.e. \tilde{m} is enumerable from below, and for any enumerable semimeasure *m* it holds that $m \leq c_m \tilde{m}$ for some constant c_m .

• Semimeasure: $m: 2^{<\omega} \rightarrow [0, \infty)$ with

$$\sum_{\sigma \in 2^{<\omega}} m(\sigma) \le 1.$$

- There exists a maximal enumerable semimeasure \tilde{m} , i.e. \tilde{m} is enumerable from below, and for any enumerable semimeasure *m* it holds that $m \leq c_m \tilde{m}$ for some constant c_m .
- Coding Theorem: [Zvonkin-Levin]

$$K(\sigma) = -\log \widetilde{m}(\sigma) + c.$$

'Main theorem' of effective dimension

■ Theorem: [Ryabko; Staiger; Mayordomo] For all $\xi \in 2^{\omega}$

$$\dim_{\mathrm{H}}^{1}(\xi) = \liminf_{n \to \infty} \frac{K(\xi \upharpoonright_{n})}{n}.$$

'Main theorem' of effective dimension

■ Theorem: [Ryabko; Staiger; Mayordomo] For all $\xi \in 2^{\omega}$

$$\dim_{\mathrm{H}}^{1}(\xi) = \liminf_{n \to \infty} \frac{K(\xi \upharpoonright_{n})}{n}.$$

● *K* can be replaced by *C*, since

 $C(\sigma) \le K(\sigma) \le C(\sigma) + 2\log C(\sigma).$

It holds that \mathcal{A} has effective *s*-dim. Hausdorff measure 0 iff there exists a discrete semimeasure *m* enumerable from below such that for any $\alpha \in \mathcal{A}$,

$$\limsup_{n\to\infty}\frac{m(\alpha\restriction_n)}{2^{-sn}}=\infty.$$

It holds that \mathcal{A} has effective *s*-dim. Hausdorff measure 0 iff there exists a discrete semimeasure *m* enumerable from below such that for any $\alpha \in \mathcal{A}$,

$$\limsup_{n\to\infty}\frac{m(\alpha\restriction_n)}{2^{-sn}}=\infty.$$

Hence,

$$\dim_{\mathrm{H}}^{1}(\beta) < s \qquad \Longleftrightarrow \qquad \limsup_{n \to \infty} \frac{\widetilde{m}(\beta \restriction_{n})}{2^{-ns}} = \infty.$$

It holds that A has effective *s*-dim. Hausdorff measure 0 iff there exists a discrete semimeasure *m* enumerable from below such that for any $\alpha \in A$,

$$\limsup_{n\to\infty}\frac{m(\alpha\restriction_n)}{2^{-sn}}=\infty.$$

Hence,

$$\dim_{\mathrm{H}}^{1}(\beta) < s \qquad \Longleftrightarrow \qquad \limsup_{n \to \infty} \frac{\widetilde{m}(\beta \upharpoonright_{n})}{2^{-ns}} = \infty.$$

Using the Coding Theorem, this is equivalent to

$$(\stackrel{\infty}{\exists} n)[K(\beta \upharpoonright_n)/n < s].$$

On the other hand, suppose that

$$\liminf_{n\to\infty} K(\beta\restriction_n)/n < s.$$

On the other hand, suppose that

$$\liminf_{n\to\infty} K(\beta\restriction_n)/n < s.$$

$$C = \{ w \in 2^{<\omega} : K(w) < |w|s \}.$$

On the other hand, suppose that

$$\liminf_{n\to\infty} K(\beta\restriction_n)/n < s.$$

$$C = \{ w \in 2^{<\omega} : K(w) < |w|s \}.$$

• C is r.e. and it holds that $\sum_{w \in C} 2^{-|w|s} \le 1$.

On the other hand, suppose that

 $\liminf_{n\to\infty} K(\beta\restriction_n)/n < s.$

Define

$$C = \{ w \in 2^{<\omega} : K(w) < |w|s \}.$$

- C is r.e. and it holds that $\sum_{w \in C} 2^{-|w|s} \le 1$.
- Extract an effective *s*-test for β from *C* by defining C_n to contain all strings *w* that have 2^n predecessors already enumerated by the time they are enumerated in *C*.

Two examples

• 'Diluted' randomness: ξ ML-random, define

$$\widehat{\xi} = \xi(0) \, 0 \, \xi(1) \, 0 \, \xi(2) \, 0 \, \dots$$

Then $\dim_{\mathrm{H}}^{1}\widehat{\xi} = 1/2$. (Use K-complexity or Hölder property.)

Two examples

• 'Diluted' randomness: ξ ML-random, define

$$\widehat{\xi} = \xi(0) \, 0 \, \xi(1) \, 0 \, \xi(2) \, 0 \, \dots$$

Then $\dim_{\mathrm{H}}^{1}\widehat{\xi} = 1/2$. (Use K-complexity or Hölder property.)

• Eggleston's sequneces: $\mu_p (p, 1 - p)$ -Bernoulli measure (*p* rational). Then, for all μ_p -random sequence ξ ,

$$\dim_{\mathrm{H}}^{1} \xi = H(\mu_{p}).$$

• $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive. Def. $\alpha \oplus_Z \beta$: unique γ such that

$$\gamma \upharpoonright_Z = \alpha$$
 and $\gamma \upharpoonright_Z \mathfrak{c} = \beta$.

• $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive. Def. $\alpha \oplus_Z \beta$: unique γ such that

$$\gamma \upharpoonright_Z = \alpha$$
 and $\gamma \upharpoonright_Z \complement = \beta$.

• Theorem: If $\lim_{n\to\infty} \frac{1}{n} |Z \cap \{0, \dots, n-1\}| = \delta$, then

$$\dim_{\mathrm{H}}^{1} \alpha \oplus_{Z} \beta \geq \delta \dim_{\mathrm{H}}^{1} \alpha + (1 - \delta) \dim_{\mathrm{H}}^{1, \alpha} \beta.$$

• $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive. Def. $\alpha \oplus_Z \beta$: unique γ such that

$$\gamma \upharpoonright_Z = \alpha$$
 and $\gamma \upharpoonright_Z \complement = \beta$.

• Theorem: If $\lim_{n\to\infty} \frac{1}{n} |Z \cap \{0, \dots, n-1\}| = \delta$, then

$$\dim_{\mathrm{H}}^{1} \alpha \oplus_{Z} \beta \geq \delta \dim_{\mathrm{H}}^{1} \alpha + (1 - \delta) \dim_{\mathrm{H}}^{1, \alpha} \beta.$$

proof: use symmetry of algorithmic information.

$$K(x, y) = K(x) + K(y|x, K(x)) + c.$$

• $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive. Def. $\alpha \oplus_Z \beta$: unique γ such that

$$\gamma \upharpoonright_Z = \alpha$$
 and $\gamma \upharpoonright_Z \complement = \beta$.

• Theorem: If $\lim_{n\to\infty} \frac{1}{n} |Z \cap \{0, \dots, n-1\}| = \delta$, then

$$\dim_{\mathrm{H}}^{1} \alpha \oplus_{Z} \beta \geq \delta \dim_{\mathrm{H}}^{1} \alpha + (1 - \delta) \dim_{\mathrm{H}}^{1, \alpha} \beta.$$

proof: use symmetry of algorithmic information.

$$K(x, y) = K(x) + K(y|x, K(x)) + c.$$

■ Theorem: For all $\alpha \in 2^{\omega}$, dim¹_H($\alpha^{\equiv_{T}}$) = dim¹_H($\leq_{T} A$)

Terwijn showed that the lower *tt*-span of the halting problem *K* contains a Martin-Löf random sequence.

- Terwijn showed that the lower *tt*-span of the halting problem *K* contains a Martin-Löf random sequence.
- On the other hand, *K* does not *tt*-reduce to a Martin-Löf random sequence (Bennet; Juedes,Lathrop, and Lutz), which implies that $K^{\equiv_{\text{tt}}}$ is a Martin-Löf nullclass.

- Terwijn showed that the lower *tt*-span of the halting problem *K* contains a Martin-Löf random sequence.
- On the other hand, *K* does not *tt*-reduce to a Martin-Löf random sequence (Bennet; Juedes,Lathrop, and Lutz), which implies that $K^{\equiv_{\text{tt}}}$ is a Martin-Löf nullclass.
- Corollary: $K^{\equiv_{tt}}$ is ML-null but $\dim_{H}^{1} K^{\equiv_{tt}} = 1$.

- Terwijn showed that the lower *tt*-span of the halting problem *K* contains a Martin-Löf random sequence.
- On the other hand, *K* does not *tt*-reduce to a Martin-Löf random sequence (Bennet; Juedes,Lathrop, and Lutz), which implies that $K^{\equiv_{\text{tt}}}$ is a Martin-Löf nullclass.
- Corollary: $K^{\equiv_{tt}}$ is ML-null but $\dim_{H}^{1} K^{\equiv_{tt}} = 1$.
- Theorem: $\dim_{\mathrm{H}}^{1 \leq_{\mathrm{btt}}} K = 0$ (and hence $\dim_{\mathrm{H}}^{1} K^{\equiv_{\mathrm{btt}}} = 0$).

A lower cone of dimension 0

▲ A sequence $\omega \in 2^{\omega}$ is 1-generic if for every r.e. set $U \subseteq 2^{<\omega} \text{ it holds that}$

 $(\exists x \sqsubset \omega) \ [x \in U \text{ or no extension of } x \text{ is in } U].$

A lower cone of dimension 0

A sequence ω ∈ 2^ω is 1-generic if for every r.e. set U ⊆ 2^{<ω} it holds that

 $(\exists x \sqsubset \omega) \ [x \in U \text{ or no extension of } x \text{ is in } U].$

• Theorem: If $\xi \in 2^{\omega}$ is 1-generic, then

$$\beta \leq_{\mathrm{T}} \xi \quad \Rightarrow \quad \dim_{\mathrm{H}}^{1} \beta = 0,$$

which is equivalent to $\dim_{\mathrm{H}}^{1}(\leq_{\mathrm{T}} \xi) = 0$.

A lower cone of dimension 0

A sequence ω ∈ 2^ω is 1-generic if for every r.e. set U ⊆ 2^{<ω} it holds that

 $(\exists x \sqsubset \omega) \ [x \in U \text{ or no extension of } x \text{ is in } U].$

• Theorem: If $\xi \in 2^{\omega}$ is 1-generic, then

$$\beta \leq_{\mathrm{T}} \xi \implies \dim_{\mathrm{H}}^{1} \beta = 0,$$

which is equivalent to $\dim_{\mathrm{H}}^{1}(\leq_{\mathrm{T}} \xi) = 0$.

Proof uses result by Kucera and Demuth:
If ω is 1-generic and β ≤_T ω, then any simple set S ⊆ 2^{<ω}
contains a string w such that w ⊏ β.

For many-one reducibility, we can show the existence of lower cones of non-integral dimension.

- For many-one reducibility, we can show the existence of lower cones of non-integral dimension.
- Theorem: Let $\mu_{\vec{p}}$, $\vec{p} = (p_0, p_1, ...)$, be a computable generalized Bernoulli measure with limit frequency p. If α is $\mu_{\vec{p}}$ -random, then

$$\dim_{\mathrm{H}}^{1}(\leq_{\mathrm{m}}\alpha) = H(\mu_{\vec{p}}).$$

- For many-one reducibility, we can show the existence of lower cones of non-integral dimension.
- Theorem: Let $\mu_{\vec{p}}$, $\vec{p} = (p_0, p_1, ...)$, be a computable generalized Bernoulli measure with limit frequency p. If α is $\mu_{\vec{p}}$ -random, then

$$\dim_{\mathrm{H}}^{1}(\leq_{\mathrm{m}}\alpha) = H(\mu_{\vec{p}}).$$

Proof: We know that $\dim_{\mathrm{H}}^{1} \alpha = H(\mu_{\vec{p}})$. Furthermore, α is Kolmogorov-Loveland stochastic with respect to $\mu_{\vec{p}}$.

How about weak reducibilities, especially Turing?
Cones of non-integral dimension

- How about weak reducibilities, especially Turing?
- Touches a different aspect:
 How random are sequences of positive dimension?
 Are they random with respect to some computable measure?

Cones of non-integral dimension

- How about weak reducibilities, especially Turing?
- Touches a different aspect:
 How random are sequences of positive dimension?
 Are they random with respect to some computable measure?
- Theorem: [Levin]

Every sequence which is random relative to some computable measure computes a Martin-Löf random sequence.

Cones of non-integral dimension

- How about weak reducibilities, especially Turing?
- Touches a different aspect:
 How random are sequences of positive dimension?
 Are they random with respect to some computable measure?
- Theorem: [Levin]

Every sequence which is random relative to some computable measure computes a Martin-Löf random sequence.

If the measure is computable and non-atomic, the reduction is even truth-table.

Investigate the relation between entropy and randomness beyond Schnorr's Theorem.

- Investigate the relation between entropy and randomness beyond Schnorr's Theorem.
- Is every sequence of positive dimension random with respect to some computable measure?

- Investigate the relation between entropy and randomness beyond Schnorr's Theorem.
- Is every sequence of positive dimension random with respect to some computable measure?
- Negative answer:

Theorem: For each $s \in (0, 1]$, there exists an sequence of dimension s not random with respect to any computable measure.

- Investigate the relation between entropy and randomness beyond Schnorr's Theorem.
- Is every sequence of positive dimension random with respect to some computable measure?
- Negative answer:

Theorem: For each $s \in (0, 1]$, there exists an sequence of dimension s not random with respect to any computable measure.

■ Uses: If $\zeta \in 2^{\omega}$ is 1-generic, then, for any $\omega \in 2^{\omega}$ and any computable, infinite, co-infinite set $Z \subseteq \mathbb{N}$, $\zeta \oplus_Z \omega$ is not a natural sequence.

On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.

- On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.
- Theorem: [R-Slaman] There is a recursive (probability) measure μ and a nonrecursive sequence α such that the following conditions hold.

- On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.
- Theorem: [R-Slaman] There is a recursive (probability) measure μ and a nonrecursive sequence α such that the following conditions hold.
 - (1) α is μ -random.

- On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.
- Theorem: [R-Slaman] There is a recursive (probability) measure μ and a nonrecursive sequence α such that the following conditions hold.
 - (1) α is μ -random.
 - (2) For every nondecreasing, nonconstant, recursive function g, there is an n such that

$$K(\alpha \upharpoonright_n) \leq g(n).$$

One can extend the notion of randomness to arbitrary measures.

- One can extend the notion of randomness to arbitrary measures.
- Fix a suitable representation of measures and consider Martin-Löf tests enumerable in that representation.

- One can extend the notion of randomness to arbitrary measures.
- Fix a suitable representation of measures and consider Martin-Löf tests enumerable in that representation.
- However, it turns out that arbitrary randomness is to 'coarse'. It can only distinguish between recursive and non-recursive sequences.

• Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:

- Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:
 - (1) There is a (probability) measure μ on 2^{ω} such that α is not a μ -atom and α is μ -random.

- Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:
 - (1) There is a (probability) measure μ on 2^{ω} such that α is not a μ -atom and α is μ -random.
 - (2) α is not computable.

- Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:
 - (1) There is a (probability) measure μ on 2^{ω} such that α is not a μ -atom and α is μ -random.
 - (2) α is not computable.
- Can we at least bound the complexity of a measure rendering a sequence of positive dimension random?

• Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A}) > 0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

 $(\forall w \in 2^{<\omega}) \ [\mu[w] \le 2^{-|w|s}].$

• Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A}) > 0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

$$(\forall w \in 2^{<\omega}) \ [\mu[w] \le 2^{-|w|s}].$$

Analyzing the proof yields the following effective version.

• Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A}) > 0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

 $(\forall w \in 2^{<\omega}) \ [\mu[w] \le 2^{-|w|s}].$

- Analyzing the proof yields the following effective version.
- Theorem: Any sequence $\alpha \in 2^{\omega}$ with $\dim_{\mathrm{H}}^{1} \alpha > 0$ computes a measure μ such that

• Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A}) > 0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

 $(\forall w \in 2^{<\omega}) \ [\mu[w] \le 2^{-|w|s}].$

- Analyzing the proof yields the following effective version.
- Theorem: Any sequence $\alpha \in 2^{\omega}$ with $\dim_{\mathrm{H}}^{1} \alpha > 0$ computes a measure μ such that

(1) α is μ -random,

• Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A}) > 0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

 $(\forall w \in 2^{<\omega}) \ [\mu[w] \le 2^{-|w|s}].$

- Analyzing the proof yields the following effective version.
- Theorem: Any sequence $\alpha \in 2^{\omega}$ with $\dim_{\mathrm{H}}^{1} \alpha > 0$ computes a measure μ such that

(1) α is μ -random,

(2) μ is Δ_2^0 (relative to α).

Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.
- Theorem: [R-Slaman] There is a recursive, nondecreasing, unbounded function $h : \mathbb{N} \to \mathbb{N}$ and a sequence α such that the following conditions hold.

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.
- Theorem: [R-Slaman] There is a recursive, nondecreasing, unbounded function h : N → N and a sequence α such that the following conditions hold.
 (1) For all n, K(α ↾_n) ≥ h(n).

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.
- Theorem: [R-Slaman] There is a recursive, nondecreasing, unbounded function $h : \mathbb{N} \to \mathbb{N}$ and a sequence α such that the following conditions hold.

(1) For all
$$n$$
, $K(\alpha \upharpoonright_n) \ge h(n)$.

(2) α does not Turing-compute a ML-random sequence.

General task: Classify the sequences which compute a Martin-Löf random sequence.

- General task: Classify the sequences which compute a Martin-Löf random sequence.
- Started with Von Neumann's idea how to turn a biased coin into an unbiased one.