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Hausdorff measures

Caratheodory-Hausdorff construction on metric spaces:
X metric space E ⊆ X , metric d, h : R → R

non-decreasing, continuous on the right with h(0) = 0,
δ > 0.
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Hausdorff measures

Caratheodory-Hausdorff construction on metric spaces:
X metric space E ⊆ X , metric d, h : R → R

non-decreasing, continuous on the right with h(0) = 0,
δ > 0.

Define set function

H
h
δ (E) = inf

{∑

i

h(d(Ui )) : E ⊆
⋃

i

Ui , d(Ui ) ≤ δ

}
.
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Letting δ → 0 yields an (outer) measure.
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Hausdorff measures

Caratheodory-Hausdorff construction on metric spaces:
X metric space E ⊆ X , metric d, h : R → R

non-decreasing, continuous on the right with h(0) = 0,
δ > 0.

Define set function

H
h
δ (E) = inf

{∑

i

h(d(Ui )) : E ⊆
⋃

i

Ui , d(Ui ) ≤ δ

}
.

Letting δ → 0 yields an (outer) measure.

The h-dimensional Hausdorff measure Hh is defined as

H
h(E) = lim

δ→0
H

h
δ (E)

Hausdorff Dimension, Randomness, and Entropy – p.2



Properties of Hausdorff measures

Hh is Borel regular:
all Borel sets B are measurable, i.e.

(∀A ⊆ X) Hh(A) = H
h(A ∩ B) + H

h(A \ B),

and for all A ⊆ X there is a Borel set B ⊆ A such that

H
h(B) = H

h(A).
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Properties of Hausdorff measures

Hh is Borel regular:
all Borel sets B are measurable, i.e.

(∀A ⊆ X) Hh(A) = H
h(A ∩ B) + H

h(A \ B),

and for all A ⊆ X there is a Borel set B ⊆ A such that

H
h(B) = H

h(A).

For X = R
n (Euclidean) and s = n, Hn yields the usual

Lebesgue measure λ (up to a multiplicative constant).

Hausdorff Dimension, Randomness, and Entropy – p.3



From measure to dimension

An obvious choice for h is h(x) = xs for s ≥ 0.
We denote the associated Hausdorff measure by Hs .
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From measure to dimension

An obvious choice for h is h(x) = xs for s ≥ 0.
We denote the associated Hausdorff measure by Hs .

Important property: For 0 ≤ s < t < ∞ und E ⊆ X ,

H
s(E) < ∞ ⇒ H

t(E) = 0,

H
t (E) > 0 ⇒ H

s(E) = ∞.
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From measure to dimension

An obvious choice for h is h(x) = xs for s ≥ 0.
We denote the associated Hausdorff measure by Hs .

Important property: For 0 ≤ s < t < ∞ und E ⊆ X ,

H
s(E) < ∞ ⇒ H

t(E) = 0,

H
t (E) > 0 ⇒ H

s(E) = ∞.

The Hausdorff dimension of a set E is defined as

dimH(E) = inf{s ≥ 0 : H
s(E) = 0}

= sup{t ≥ 0 : H
t(E) = ∞}
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Famous examples

Mandelbrot sets – dimH = 2
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Famous examples

Koch snowflake – dimH = log 4/ log 3
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Famous examples

Cantor set – dimH = log 2/ log 3
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The Cantor space

Cantor space: 2ω, space of all infinite binary sequences.

Hausdorff Dimension, Randomness, and Entropy – p.8



The Cantor space

Cantor space: 2ω, space of all infinite binary sequences.

Metric given by

d(α, β) = 2−N where N = min{n : α(n) 6= β(n)}.
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The Cantor space

Cantor space: 2ω, space of all infinite binary sequences.

Metric given by

d(α, β) = 2−N where N = min{n : α(n) 6= β(n)}.

Open sets in Cantor space are unions of cylinders,
induced by a finite string σ ∈ 2<ω.

[σ ] := {α : σ ⊏ α}.

Diameter d[σ ] = 2−|σ |.
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Hausdorff dimension in Cantor space

Hs-nullsets in 2ω:
A ⊆ 2ω has s-dimensional Hausdorff measure 0 iff

(∀n ∈ ω) (∃Cn ⊆ 2<ω) A ⊆
⋃

σ∈Cn

[σ ] ∧
∑

σ∈Cn

2−|σ |s ≤ 2−n.
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Hausdorff dimension in Cantor space

Hs-nullsets in 2ω:
A ⊆ 2ω has s-dimensional Hausdorff measure 0 iff

(∀n ∈ ω) (∃Cn ⊆ 2<ω) A ⊆
⋃

σ∈Cn

[σ ] ∧
∑

σ∈Cn

2−|σ |s ≤ 2−n.

Effectivization: Require Cn to be effectively given, e.g. as
a uniformly recursive family of r.e. sets of strings.

Hausdorff Dimension, Randomness, and Entropy – p.9



An example from recursion theory

Theorem: [Sacks]
The upper Turing cone of a non-recursive set has
Lebesgue measure 0 (majority voting principle).
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An example from recursion theory

Theorem: [Sacks]
The upper Turing cone of a non-recursive set has
Lebesgue measure 0 (majority voting principle).

Theorem:

(∀α ∈ 2ω) dimH(α≤T) = 1.
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An example from recursion theory

Theorem: [Sacks]
The upper Turing cone of a non-recursive set has
Lebesgue measure 0 (majority voting principle).

Theorem:

(∀α ∈ 2ω) dimH(α≤T) = 1.

Mass distribution principle: A ⊆ 2ω, µ measure on 2ω,
µ(A) > 0. If there are c, s such that

µ[σ ] ≤ c2−|σ |s = cd[σ ]s

(for all σ ), then dimH A ≥ s.
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Properties of Hausdorff dimension

Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.
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Properties of Hausdorff dimension

Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.

Monotony: A ⊆ B implies dimH(A) ≤ dimH(B).
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Properties of Hausdorff dimension

Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.

Monotony: A ⊆ B implies dimH(A) ≤ dimH(B).

Stability: For A1,A2, · · · ⊆ 2ω it holds that

dimH(
⋃

Ai ) = sup{dimH(Ai )}.

(Immediately implies that all countable sets have
dimension 0.)
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Properties of Hausdorff dimension

Geometric transformations: If h is Hölder continuous, i.e.
if there are constants c, r > 0 for which

(∀α, β) d(h(α), h(β)) ≤ cd(α, β)r ,

then

dimH h(A) ≤ (1/r) dimH(A).
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Properties of Hausdorff dimension

Geometric transformations: If h is Hölder continuous, i.e.
if there are constants c, r > 0 for which

(∀α, β) d(h(α), h(β)) ≤ cd(α, β)r ,

then

dimH h(A) ≤ (1/r) dimH(A).

For r = 1, h is Lipschitz continuous. If h is bi-Lipschitz,
then

dimH h(A) = dimH(A).
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Properties of Hausdorff dimension

Geometric transformations: If h is Hölder continuous, i.e.
if there are constants c, r > 0 for which

(∀α, β) d(h(α), h(β)) ≤ cd(α, β)r ,

then

dimH h(A) ≤ (1/r) dimH(A).

For r = 1, h is Lipschitz continuous. If h is bi-Lipschitz,
then

dimH h(A) = dimH(A).

Fractal geometry =̂ study properties invariant under
bi-Lipschitz trandformations.
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Dimension and entropy

For δ = 2−n, simple δ-covering for A ⊆ 2ω:

A[n] := {α ↾n: α ∈ A}.
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Dimension and entropy

For δ = 2−n, simple δ-covering for A ⊆ 2ω:

A[n] := {α ↾n: α ∈ A}.

Minkowski- or box-counting dimension:

dimB(A) := lim inf
n→∞

log |A[n]|

n
.

It holds that dimH(A) ≤ dimB(A).
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Dimension and entropy

For δ = 2−n, simple δ-covering for A ⊆ 2ω:

A[n] := {α ↾n: α ∈ A}.

Minkowski- or box-counting dimension:

dimB(A) := lim inf
n→∞

log |A[n]|

n
.

It holds that dimH(A) ≤ dimB(A).

If A is shift-invariant, dimB is also called topological
entropy, and for closed sets A it holds that

dimH(A) = dimB(A).
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Dimension and entropy

Given p ∈ [0, 1], let µp (p, 1 − p)-Bernoulli measure
(product measure on 2ω with P[1] = p, P[0] = 1 − p).
Entropy H(µp) is defined as

H(µp) = −[p log p + (1 − p) log(1 − p)].
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Dimension and entropy

Given p ∈ [0, 1], let µp (p, 1 − p)-Bernoulli measure
(product measure on 2ω with P[1] = p, P[0] = 1 − p).
Entropy H(µp) is defined as

H(µp) = −[p log p + (1 − p) log(1 − p)].

Theorem: [Eggleston] For p ∈ [0, 1] let

B =

{
α ∈ 2ω : lim

n→∞

|{i ≤ n : α(i) = 1}|

n
= p

}
.

Then

dimH B = H(µp).
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Effective Hausdorff dimension

Introduce effective coverings and define the notion of
effective Hs-measure 0.
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Effective Hausdorff dimension

Introduce effective coverings and define the notion of
effective Hs-measure 0.

(Let s ≥ 0 be rational.) A ⊆ 2ω is 61-Hs null,
60

1-Hs(A) = 0, if there is a recursive sequence (Cn) of r.e.
sets such that for each n,

A ⊆
⋃

w∈Cn

[w] and
∑

w∈Cn

2−|w|s < 2−n.
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Effective Hausdorff dimension

Introduce effective coverings and define the notion of
effective Hs-measure 0.

(Let s ≥ 0 be rational.) A ⊆ 2ω is 61-Hs null,
60

1-Hs(A) = 0, if there is a recursive sequence (Cn) of r.e.
sets such that for each n,

A ⊆
⋃

w∈Cn

[w] and
∑

w∈Cn

2−|w|s < 2−n.

Definition of effective Hausdorff dimension is
straightforward:

dim1
H(A) = inf{s ≥ 0 : 60

1-Hs(A) = 0}.
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Properties of effective dimension

Monotony is conserved. Obviously, also
dimH A ≤ dim1

H A.
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Properties of effective dimension

Monotony is conserved. Obviously, also
dimH A ≤ dim1

H A.

Random sequences: 60
1-H1 corresponds to Martin-Löf’s

effective measure. A sequence α which is not 60
1-H1-null

is called Martin-Löf-random.
Obviously, if α is ML-random then dim1

H α = 1.
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Properties of effective dimension

Monotony is conserved. Obviously, also
dimH A ≤ dim1

H A.

Random sequences: 60
1-H1 corresponds to Martin-Löf’s

effective measure. A sequence α which is not 60
1-H1-null

is called Martin-Löf-random.
Obviously, if α is ML-random then dim1

H α = 1.

Stability: [Lutz] dim1
H A = supξ∈A dim1

H ξ

Follows from existence of maximal effective s-nulltests,
i.e. a recursive sequence of r.e. sets {U s

n }, for which

A is 60
1-Hs-null ⇐⇒ (∀α ∈ A) α ∈

⋂

n

[U s
n ].
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Algorithmic entropy

Kolmogorov complexity: Let U be a universal Turing
machine. For a string σ define

C(σ ) = CU (σ ) = min{|p| : p ∈ 2<ω, U(p) = σ },

i.e. C(σ ) is the length of the shortest U -program for σ .
(Independent (up to an additiv constant) of the choice of
U .)
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Algorithmic entropy

Kolmogorov complexity: Let U be a universal Turing
machine. For a string σ define

C(σ ) = CU (σ ) = min{|p| : p ∈ 2<ω, U(p) = σ },

i.e. C(σ ) is the length of the shortest U -program for σ .
(Independent (up to an additiv constant) of the choice of
U .)

Variant: prefix-free complexity K . Based on prefix-free
Turing-machines – no two converging inputs are prefixes
of one another.
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Entropy and randomness

Schnorr’s Theorem:

α ML-random ⇔ (∃c) (∀n) K (α ↾n) ≥ n − c.
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Kolmogorov complexity and coding

The domain of a prefix-free Turing machine is a
prefix-free code.
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Kolmogorov complexity and coding

The domain of a prefix-free Turing machine is a
prefix-free code.

Kraft-Chaitin Theorem: {σi }i∈N set of strings, {li , l2, . . . }

sequence of natural numbers (’lengths’) such that
∑

i∈N

2−li ≤ 1,

then one can construct (primitive recursively) a prefix-free
TM M and strings {τi }i∈N, such that

|τi | = li and M(τi ) = σi .
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Kolmogorov complexity and coding

Semimeasure: m : 2<ω → [0,∞) with
∑

σ∈2<ω

m(σ ) ≤ 1.
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Kolmogorov complexity and coding

Semimeasure: m : 2<ω → [0,∞) with
∑

σ∈2<ω

m(σ ) ≤ 1.

There exists a maximal enumerable semimeasure m̃, i.e.
m̃ is enumerable from below, and for any enumerable
semimeasure m it holds that m ≤ cmm̃ for some constant
cm .
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Kolmogorov complexity and coding

Semimeasure: m : 2<ω → [0,∞) with
∑

σ∈2<ω

m(σ ) ≤ 1.

There exists a maximal enumerable semimeasure m̃, i.e.
m̃ is enumerable from below, and for any enumerable
semimeasure m it holds that m ≤ cmm̃ for some constant
cm .

Coding Theorem: [Zvonkin-Levin]

K (σ ) = − log m̃(σ ) + c.
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‘Main theorem’ of effective dimension

Theorem: [Ryabko; Staiger; Mayordomo]
For all ξ ∈ 2ω

dim1
H(ξ) = lim inf

n→∞

K (ξ ↾n)

n
.
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‘Main theorem’ of effective dimension

Theorem: [Ryabko; Staiger; Mayordomo]
For all ξ ∈ 2ω

dim1
H(ξ) = lim inf

n→∞

K (ξ ↾n)

n
.

K can be replaced by C , since

C(σ ) ≤ K (σ ) ≤ C(σ ) + 2 log C(σ ).

Hausdorff Dimension, Randomness, and Entropy – p.21



An easy proof

It holds that A has effective s-dim. Hausdorff measure 0

iff there exists a discrete semimeasure m enumerable
from below such that for any α ∈ A,

lim sup
n→∞

m(α ↾n)

2−sn
= ∞.
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An easy proof

It holds that A has effective s-dim. Hausdorff measure 0

iff there exists a discrete semimeasure m enumerable
from below such that for any α ∈ A,

lim sup
n→∞

m(α ↾n)

2−sn
= ∞.

Hence,

dim1
H(β) < s ⇐⇒ lim sup

n→∞

m̃(β ↾n)

2−ns
= ∞.
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An easy proof

It holds that A has effective s-dim. Hausdorff measure 0

iff there exists a discrete semimeasure m enumerable
from below such that for any α ∈ A,

lim sup
n→∞

m(α ↾n)

2−sn
= ∞.

Hence,

dim1
H(β) < s ⇐⇒ lim sup

n→∞

m̃(β ↾n)

2−ns
= ∞.

Using the Coding Theorem, this is equivalent to

(
∞
∃n)[K (β ↾n)/n < s].
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An easy proof

On the other hand, suppose that

lim inf
n→∞

K (β ↾n)/n < s.
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An easy proof

On the other hand, suppose that

lim inf
n→∞

K (β ↾n)/n < s.

Define

C = {w ∈ 2<ω : K (w) < |w|s}.
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An easy proof

On the other hand, suppose that

lim inf
n→∞

K (β ↾n)/n < s.

Define

C = {w ∈ 2<ω : K (w) < |w|s}.

C is r.e. and it holds that
∑

w∈C 2−|w|s ≤ 1.

Hausdorff Dimension, Randomness, and Entropy – p.23



An easy proof

On the other hand, suppose that

lim inf
n→∞

K (β ↾n)/n < s.

Define

C = {w ∈ 2<ω : K (w) < |w|s}.

C is r.e. and it holds that
∑

w∈C 2−|w|s ≤ 1.

Extract an effective s-test for β from C by defining Cn to
contain all strings w that have 2n predecessors already
enumerated by the time they are enumerated in C .
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Two examples

‘Diluted’ randomness: ξ ML-random, define

ξ̂ = ξ(0) 0 ξ(1) 0 ξ(2) 0 . . .

Then dim1
H ξ̂ = 1/2. (Use K-complexity or Hölder

property.)
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Two examples

‘Diluted’ randomness: ξ ML-random, define

ξ̂ = ξ(0) 0 ξ(1) 0 ξ(2) 0 . . .

Then dim1
H ξ̂ = 1/2. (Use K-complexity or Hölder

property.)

Eggleston’s sequneces: µp (p, 1 − p)-Bernoulli measure
(p rational). Then, for all µp-random sequence ξ ,

dim1
H ξ = H(µp).
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Degrees and lower cones

Z ⊆ N infinite, co-infinite, recursive.
Def. α ⊕Z β: unique γ such that

γ ↾Z= α and γ ↾Z∁= β.
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Degrees and lower cones

Z ⊆ N infinite, co-infinite, recursive.
Def. α ⊕Z β: unique γ such that

γ ↾Z= α and γ ↾Z∁= β.

Theorem: If limn→∞
1
n |Z ∩ {0, . . . , n − 1}| = δ, then

dim1
H α ⊕Z β ≥ δ dim1

H α + (1 − δ) dim1,α
H β.
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Degrees and lower cones

Z ⊆ N infinite, co-infinite, recursive.
Def. α ⊕Z β: unique γ such that

γ ↾Z= α and γ ↾Z∁= β.

Theorem: If limn→∞
1
n |Z ∩ {0, . . . , n − 1}| = δ, then

dim1
H α ⊕Z β ≥ δ dim1

H α + (1 − δ) dim1,α
H β.

proof: use symmetry of algorithmic information.

K (x, y) = K (x) + K (y|x, K (x)) + c.
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Degrees and lower cones

Z ⊆ N infinite, co-infinite, recursive.
Def. α ⊕Z β: unique γ such that

γ ↾Z= α and γ ↾Z∁= β.

Theorem: If limn→∞
1
n |Z ∩ {0, . . . , n − 1}| = δ, then

dim1
H α ⊕Z β ≥ δ dim1

H α + (1 − δ) dim1,α
H β.

proof: use symmetry of algorithmic information.

K (x, y) = K (x) + K (y|x, K (x)) + c.

Theorem: For all α ∈ 2ω, dim1
H(α≡T) = dim1

H(≤T A)
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Degrees and lower cones

Terwijn showed that the lower t t-span of the halting
problem K contains a Martin-Löf random sequence.
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Degrees and lower cones

Terwijn showed that the lower t t-span of the halting
problem K contains a Martin-Löf random sequence.

On the other hand, K does not t t-reduce to a Martin-Löf
random sequence (Bennet; Juedes,Lathrop, and Lutz),
which implies that K ≡tt is a Martin-Löf nullclass.
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Degrees and lower cones

Terwijn showed that the lower t t-span of the halting
problem K contains a Martin-Löf random sequence.

On the other hand, K does not t t-reduce to a Martin-Löf
random sequence (Bennet; Juedes,Lathrop, and Lutz),
which implies that K ≡tt is a Martin-Löf nullclass.

Corollary: K ≡tt is ML-null but dim1
H K ≡tt = 1.
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Degrees and lower cones

Terwijn showed that the lower t t-span of the halting
problem K contains a Martin-Löf random sequence.

On the other hand, K does not t t-reduce to a Martin-Löf
random sequence (Bennet; Juedes,Lathrop, and Lutz),
which implies that K ≡tt is a Martin-Löf nullclass.

Corollary: K ≡tt is ML-null but dim1
H K ≡tt = 1.

Theorem: dim1
H

≤btt K = 0 (and hence dim1
H K ≡btt = 0).

Hausdorff Dimension, Randomness, and Entropy – p.26



A lower cone of dimension 0

A sequence ω ∈ 2ω is 1-generic if for every r.e. set
U ⊆ 2<ω it holds that

(∃x ⊏ ω) [x ∈ U or no extension of x is in U ].
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A lower cone of dimension 0

A sequence ω ∈ 2ω is 1-generic if for every r.e. set
U ⊆ 2<ω it holds that

(∃x ⊏ ω) [x ∈ U or no extension of x is in U ].

Theorem: If ξ ∈ 2ω is 1-generic, then

β ≤T ξ ⇒ dim1
H β = 0,

which is equivalent to dim1
H(≤Tξ) = 0.
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A lower cone of dimension 0

A sequence ω ∈ 2ω is 1-generic if for every r.e. set
U ⊆ 2<ω it holds that

(∃x ⊏ ω) [x ∈ U or no extension of x is in U ].

Theorem: If ξ ∈ 2ω is 1-generic, then

β ≤T ξ ⇒ dim1
H β = 0,

which is equivalent to dim1
H(≤Tξ) = 0.

Proof uses result by Kucera and Demuth:
If ω is 1-generic and β ≤T ω, then any simple set S ⊆ 2<ω

contains a string w such that w ⊏ β.
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Cones of non-integral dimension

For many-one reducibility, we can show the existence of
lower cones of non-integral dimension.
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Cones of non-integral dimension

For many-one reducibility, we can show the existence of
lower cones of non-integral dimension.

Theorem: Let µ Ep, Ep = (p0, p1, . . . ), be a computable
generalized Bernoulli measure with limit frequency p. If α

is µ Ep-random, then

dim1
H(≤mα) = H(µ Ep).

Hausdorff Dimension, Randomness, and Entropy – p.28



Cones of non-integral dimension

For many-one reducibility, we can show the existence of
lower cones of non-integral dimension.

Theorem: Let µ Ep, Ep = (p0, p1, . . . ), be a computable
generalized Bernoulli measure with limit frequency p. If α

is µ Ep-random, then

dim1
H(≤mα) = H(µ Ep).

Proof: We know that dim1
H α = H(µ Ep).

Furthermore, α is Kolmogorov-Loveland stochastic with
respect to µ Ep.

Hausdorff Dimension, Randomness, and Entropy – p.28



Cones of non-integral dimension

How about weak reducibilities, especially Turing?
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Touches a different aspect:
How random are sequences of positive dimension?
Are they random with respect to some computable
measure?
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Touches a different aspect:
How random are sequences of positive dimension?
Are they random with respect to some computable
measure?

Theorem: [Levin]
Every sequence which is random relative to some
computable measure computes a Martin-Löf random
sequence.
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Cones of non-integral dimension

How about weak reducibilities, especially Turing?

Touches a different aspect:
How random are sequences of positive dimension?
Are they random with respect to some computable
measure?

Theorem: [Levin]
Every sequence which is random relative to some
computable measure computes a Martin-Löf random
sequence.

If the measure is computable and non-atomic, the
reduction is even truth-table.

Hausdorff Dimension, Randomness, and Entropy – p.29



Entropy and randomness

Investigate the relation between entropy and randomness
beyond Schnorr’s Theorem.
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Entropy and randomness

Investigate the relation between entropy and randomness
beyond Schnorr’s Theorem.

Is every sequence of positive dimension random with
respect to some computable measure?

Negative answer:
Theorem: For each s ∈ (0, 1], there exists an sequence of
dimension s not random with respect to any computable
measure.
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Entropy and randomness

Investigate the relation between entropy and randomness
beyond Schnorr’s Theorem.

Is every sequence of positive dimension random with
respect to some computable measure?

Negative answer:
Theorem: For each s ∈ (0, 1], there exists an sequence of
dimension s not random with respect to any computable
measure.

Uses: If ζ ∈ 2ω is 1-generic, then, for any ω ∈ 2ω and any
computable, infinite, co-infinite set Z ⊆ N, ζ ⊕Z ω is not a
natural sequence.
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Entropy and randomness

On the other hand, randomness with respect to a
computable measure does not imply non-trivial entropy.
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computable measure does not imply non-trivial entropy.

Theorem: [R-Slaman] There is a recursive (probability)
measure µ and a nonrecursive sequence α such that the
following conditions hold.
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computable measure does not imply non-trivial entropy.

Theorem: [R-Slaman] There is a recursive (probability)
measure µ and a nonrecursive sequence α such that the
following conditions hold.

(1) α is µ-random.
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Entropy and randomness

On the other hand, randomness with respect to a
computable measure does not imply non-trivial entropy.

Theorem: [R-Slaman] There is a recursive (probability)
measure µ and a nonrecursive sequence α such that the
following conditions hold.

(1) α is µ-random.

(2) For every nondecreasing, nonconstant, recursive
function g, there is an n such that

K (α ↾n) ≤ g(n).
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Generalized randomness

One can extend the notion of randomness to arbitrary
measures.
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Generalized randomness

One can extend the notion of randomness to arbitrary
measures.

Fix a suitable representation of measures and consider
Martin-Löf tests enumerable in that representation.
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Generalized randomness

One can extend the notion of randomness to arbitrary
measures.

Fix a suitable representation of measures and consider
Martin-Löf tests enumerable in that representation.

However, it turns out that arbitrary randomness is to
‘coarse’. It can only distinguish between recursive and
non-recursive sequences.
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Generalized randomness

Theorem: [R-Slaman] For α ∈ 2ω, the following are
equivalent:
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Generalized randomness

Theorem: [R-Slaman] For α ∈ 2ω, the following are
equivalent:

(1) There is a (probability) measure µ on 2ω such that α is
not a µ-atom and α is µ-random.
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Generalized randomness

Theorem: [R-Slaman] For α ∈ 2ω, the following are
equivalent:

(1) There is a (probability) measure µ on 2ω such that α is
not a µ-atom and α is µ-random.

(2) α is not computable.
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Generalized randomness

Theorem: [R-Slaman] For α ∈ 2ω, the following are
equivalent:

(1) There is a (probability) measure µ on 2ω such that α is
not a µ-atom and α is µ-random.

(2) α is not computable.

Can we at least bound the complexity of a measure
rendering a sequence of positive dimension random?
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Randomness for positive dimension

Frostman’s Lemma: Let A ⊆ 2ω be compact. Then
Hs(A) > 0 if and only if there exists a Radon probability
measure µ with compact support contained in A such that

(∀w ∈ 2<ω) [µ[w] ≤ 2−|w|s].
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Hs(A) > 0 if and only if there exists a Radon probability
measure µ with compact support contained in A such that

(∀w ∈ 2<ω) [µ[w] ≤ 2−|w|s].

Analyzing the proof yields the following effective version.
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Hs(A) > 0 if and only if there exists a Radon probability
measure µ with compact support contained in A such that

(∀w ∈ 2<ω) [µ[w] ≤ 2−|w|s].

Analyzing the proof yields the following effective version.

Theorem: Any sequence α ∈ 2ω with dim1
H α > 0

computes a measure µ such that
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Randomness for positive dimension

Frostman’s Lemma: Let A ⊆ 2ω be compact. Then
Hs(A) > 0 if and only if there exists a Radon probability
measure µ with compact support contained in A such that

(∀w ∈ 2<ω) [µ[w] ≤ 2−|w|s].

Analyzing the proof yields the following effective version.

Theorem: Any sequence α ∈ 2ω with dim1
H α > 0

computes a measure µ such that

(1) α is µ-random,

(2) µ is 10
2 (relative to α).
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Extracting randomness

Open problem: Does every sequence of positive
dimension compute a Martin-Löf random sequence?
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Extracting randomness

Open problem: Does every sequence of positive
dimension compute a Martin-Löf random sequence?

For very weak positive entropy, the answer is negative.
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Extracting randomness

Open problem: Does every sequence of positive
dimension compute a Martin-Löf random sequence?

For very weak positive entropy, the answer is negative.

Theorem: [R-Slaman] There is a recursive,
nondecreasing, unbounded function h : N → N and a
sequence α such that the following conditions hold.
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Extracting randomness

Open problem: Does every sequence of positive
dimension compute a Martin-Löf random sequence?

For very weak positive entropy, the answer is negative.

Theorem: [R-Slaman] There is a recursive,
nondecreasing, unbounded function h : N → N and a
sequence α such that the following conditions hold.

(1) For all n, K (α ↾n) ≥ h(n).
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Extracting randomness

Open problem: Does every sequence of positive
dimension compute a Martin-Löf random sequence?

For very weak positive entropy, the answer is negative.

Theorem: [R-Slaman] There is a recursive,
nondecreasing, unbounded function h : N → N and a
sequence α such that the following conditions hold.

(1) For all n, K (α ↾n) ≥ h(n).

(2) α does not Turing-compute a ML-random sequence.
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Extracting randomness

General task: Classify the sequences which compute a
Martin-Löf random sequence.
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Extracting randomness

General task: Classify the sequences which compute a
Martin-Löf random sequence.

Started with Von Neumann’s idea how to turn a biased
coin into an unbiased one.
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