Hausdorff Dimension, Randomness, and Entropy

Jan Reimann

Institut für Informatik, Universität Heidelberg

Hausdorff measures

- Caratheodory-Hausdorff construction on metric spaces: X metric space $E \subseteq X$, metric $d, h: \mathbb{R} \rightarrow \mathbb{R}$ non-decreasing, continuous on the right with $h(0)=0$, $\delta>0$.

Hausdorff measures

- Caratheodory-Hausdorff construction on metric spaces: X metric space $E \subseteq X$, metric $d, h: \mathbb{R} \rightarrow \mathbb{R}$ non-decreasing, continuous on the right with $h(0)=0$, $\delta>0$.
- Define set function

$$
\mathcal{H}_{\delta}^{h}(E)=\inf \left\{\sum_{i} h\left(d\left(U_{i}\right)\right): E \subseteq \bigcup_{i} U_{i}, d\left(U_{i}\right) \leq \delta\right\} .
$$

Hausdorff measures

- Caratheodory-Hausdorff construction on metric spaces: X metric space $E \subseteq X$, metric $d, h: \mathbb{R} \rightarrow \mathbb{R}$ non-decreasing, continuous on the right with $h(0)=0$, $\delta>0$.
- Define set function

$$
\mathcal{H}_{\delta}^{h}(E)=\inf \left\{\sum_{i} h\left(d\left(U_{i}\right)\right): E \subseteq \bigcup_{i} U_{i}, d\left(U_{i}\right) \leq \delta\right\} .
$$

- Letting $\delta \rightarrow 0$ yields an (outer) measure.

Hausdorff measures

- Caratheodory-Hausdorff construction on metric spaces: X metric space $E \subseteq X$, metric $d, h: \mathbb{R} \rightarrow \mathbb{R}$ non-decreasing, continuous on the right with $h(0)=0$, $\delta>0$.
- Define set function

$$
\mathcal{H}_{\delta}^{h}(E)=\inf \left\{\sum_{i} h\left(d\left(U_{i}\right)\right): E \subseteq \bigcup_{i} U_{i}, d\left(U_{i}\right) \leq \delta\right\} .
$$

- Letting $\delta \rightarrow 0$ yields an (outer) measure.
- The h-dimensional Hausdorff measure \mathcal{H}^{h} is defined as

$$
\mathcal{H}^{h}(E)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{h}(E)
$$

Properties of Hausdorff measures

- \mathcal{H}^{h} is Borel regular:
all Borel sets B are measurable, i.e.

$$
(\forall A \subseteq X) \mathcal{H}^{h}(A)=\mathcal{H}^{h}(A \cap B)+\mathcal{H}^{h}(A \backslash B),
$$

and for all $A \subseteq X$ there is a Borel set $B \subseteq A$ such that

$$
\mathcal{H}^{h}(B)=\mathcal{H}^{h}(A) .
$$

Properties of Hausdorff measures

- \mathcal{H}^{h} is Borel regular:
all Borel sets B are measurable, i.e.

$$
(\forall A \subseteq X) \mathcal{H}^{h}(A)=\mathcal{H}^{h}(A \cap B)+\mathcal{H}^{h}(A \backslash B),
$$

and for all $A \subseteq X$ there is a Borel set $B \subseteq A$ such that

$$
\mathcal{H}^{h}(B)=\mathcal{H}^{h}(A) .
$$

- For $X=\mathbb{R}^{n}$ (Euclidean) and $s=n, \mathcal{H}^{n}$ yields the usual Lebesgue measure λ (up to a multiplicative constant).

From measure to dimension

- An obvious choice for h is $h(x)=x^{s}$ for $s \geq 0$. We denote the associated Hausdorff measure by \mathcal{H}^{s}.

From measure to dimension

- An obvious choice for h is $h(x)=x^{s}$ for $s \geq 0$. We denote the associated Hausdorff measure by \mathcal{H}^{s}.
- Important property: For $0 \leq s<t<\infty$ und $E \subseteq X$,

$$
\begin{aligned}
\mathcal{H}^{s}(E)<\infty & \Rightarrow \mathcal{H}^{t}(E)=0, \\
\mathcal{H}^{t}(E)>0 & \Rightarrow \mathcal{H}^{s}(E)=\infty .
\end{aligned}
$$

From measure to dimension

- An obvious choice for h is $h(x)=x^{s}$ for $s \geq 0$.

We denote the associated Hausdorff measure by \mathcal{H}^{s}.

- Important property: For $0 \leq s<t<\infty$ und $E \subseteq X$,

$$
\begin{aligned}
\mathcal{H}^{s}(E) & \Rightarrow \mathcal{H}^{t}(E)=0, \\
\mathcal{H}^{t}(E)>0 & \Rightarrow \mathcal{H}^{s}(E)=\infty .
\end{aligned}
$$

- The Hausdorff dimension of a set E is defined as

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{H}}(E) & =\inf \left\{s \geq 0: \mathcal{H}^{s}(E)=0\right\} \\
& =\sup \left\{t \geq 0: \mathcal{H}^{t}(E)=\infty\right\}
\end{aligned}
$$

Famous examples

Mandelbrot sets $-\operatorname{dim}_{H}=2$

Famous examples

Koch snowflake $-\operatorname{dim}_{H}=\log 4 / \log 3$

Famous examples

Cantor set $-\operatorname{dim}_{H}=\log 2 / \log 3$
完
五

The Cantor space

- Cantor space: 2^{ω}, space of all infinite binary sequences.

The Cantor space

- Cantor space: 2^{ω}, space of all infinite binary sequences.
- Metric given by

$$
d(\alpha, \beta)=2^{-N} \quad \text { where } N=\min \{n: \alpha(n) \neq \beta(n)\} .
$$

The Cantor space

- Cantor space: 2^{ω}, space of all infinite binary sequences.
- Metric given by

$$
d(\alpha, \beta)=2^{-N} \quad \text { where } N=\min \{n: \alpha(n) \neq \beta(n)\} .
$$

- Open sets in Cantor space are unions of cylinders, induced by a finite string $\sigma \in 2^{<\omega}$.

$$
[\sigma]:=\{\alpha: \sigma \sqsubset \alpha\} .
$$

Diameter $d[\sigma]=2^{-|\sigma|}$.

Hausdorff dimension in Cantor space

- \mathcal{H}^{s}-nullsets in 2^{ω} :
$\mathcal{A} \subseteq 2^{\omega}$ has s-dimensional Hausdorff measure 0 iff
$(\forall n \in \omega)\left(\exists C_{n} \subseteq 2^{<\omega}\right) \mathcal{A} \subseteq \bigcup_{\sigma \in C_{n}}[\sigma] \wedge \sum_{\sigma \in C_{n}} 2^{-|\sigma| s} \leq 2^{-n}$.

Hausdorff dimension in Cantor space

- \mathcal{H}^{s}-nullsets in 2^{ω} :
$\mathcal{A} \subseteq 2^{\omega}$ has s-dimensional Hausdorff measure 0 iff

$$
(\forall n \in \omega)\left(\exists C_{n} \subseteq 2^{<\omega}\right) \mathcal{A} \subseteq \bigcup_{\sigma \in C_{n}}[\sigma] \wedge \sum_{\sigma \in C_{n}} 2^{-|\sigma| s} \leq 2^{-n} .
$$

- Effectivization: Require C_{n} to be effectively given, e.g. as a uniformly recursive family of r.e. sets of strings.

An example from recursion theory

- Theorem: [Sacks]

The upper Turing cone of a non-recursive set has
Lebesgue measure 0 (majority voting principle).

An example from recursion theory

- Theorem: [Sacks]

The upper Turing cone of a non-recursive set has
Lebesgue measure 0 (majority voting principle).

- Theorem:

$$
\left(\forall \alpha \in 2^{\omega}\right) \operatorname{dim}_{\mathrm{H}}\left(\alpha^{\leq}{ }_{\mathrm{T}}\right)=1 .
$$

An example from recursion theory

- Theorem: [Sacks]

The upper Turing cone of a non-recursive set has
Lebesgue measure 0 (majority voting principle).

- Theorem:

$$
\left(\forall \alpha \in 2^{\omega}\right) \operatorname{dim}_{\mathrm{H}}\left(\alpha^{\leq}{ }_{\mathrm{T}}\right)=1 .
$$

- Mass distribution principle: $\mathcal{A} \subseteq 2^{\omega}, \mu$ measure on 2^{ω}, $\mu(\mathcal{A})>0$. If there are c, s such that

$$
\mu[\sigma] \leq c 2^{-|\sigma| s}=c d[\sigma]^{s}
$$

(for all σ), then $\operatorname{dim}_{H} \mathcal{A} \geq s$.

Properties of Hausdorff dimension

- Lebesgue measure: $\lambda(\mathcal{A})>0$ implies $\operatorname{dim}_{\mathrm{H}}(\mathcal{A})=1$.

Properties of Hausdorff dimension

- Lebesgue measure: $\lambda(\mathcal{A})>0$ implies $\operatorname{dim}_{\mathrm{H}}(\mathcal{A})=1$.
- Monotony: $\mathcal{A} \subseteq \mathcal{B}$ implies $\operatorname{dim}_{\mathrm{H}}(\mathcal{A}) \leq \operatorname{dim}_{\mathrm{H}}(\mathcal{B})$.

Properties of Hausdorff dimension

- Lebesgue measure: $\lambda(\mathcal{A})>0$ implies $\operatorname{dim}_{\mathrm{H}}(\mathcal{A})=1$.
- Monotony: $\mathcal{A} \subseteq \mathcal{B}$ implies $\operatorname{dim}_{\mathrm{H}}(\mathcal{A}) \leq \operatorname{dim}_{\mathrm{H}}(\mathcal{B})$.
- Stability: For $\mathcal{A}_{1}, \mathcal{A}_{2}, \cdots \subseteq 2^{\omega}$ it holds that

$$
\operatorname{dim}_{\mathrm{H}}\left(\bigcup \mathcal{A}_{i}\right)=\sup \left\{\operatorname{dim}_{\mathrm{H}}\left(\mathcal{A}_{i}\right)\right\} .
$$

(Immediately implies that all countable sets have dimension 0 .)

Properties of Hausdorff dimension

- Geometric transformations: If h is Hölder continuous, i.e. if there are constants $c, r>0$ for which

$$
(\forall \alpha, \beta) d(h(\alpha), h(\beta)) \leq c d(\alpha, \beta)^{r},
$$

then

$$
\operatorname{dim}_{\mathrm{H}} h(\mathcal{A}) \leq(1 / r) \operatorname{dim}_{\mathrm{H}}(\mathcal{A}) .
$$

Properties of Hausdorff dimension

- Geometric transformations: If h is Hölder continuous, i.e. if there are constants $c, r>0$ for which

$$
(\forall \alpha, \beta) d(h(\alpha), h(\beta)) \leq c d(\alpha, \beta)^{r},
$$

then

$$
\operatorname{dim}_{\mathrm{H}} h(\mathcal{A}) \leq(1 / r) \operatorname{dim}_{\mathrm{H}}(\mathcal{A}) .
$$

- For $r=1, h$ is Lipschitz continuous. If h is bi-Lipschitz, then

$$
\operatorname{dim}_{\mathrm{H}} h(\mathcal{A})=\operatorname{dim}_{\mathrm{H}}(\mathcal{A}) .
$$

Properties of Hausdorff dimension

- Geometric transformations: If h is Hölder continuous, i.e. if there are constants $c, r>0$ for which

$$
(\forall \alpha, \beta) d(h(\alpha), h(\beta)) \leq c d(\alpha, \beta)^{r},
$$

then

$$
\operatorname{dim}_{\mathrm{H}} h(\mathcal{A}) \leq(1 / r) \operatorname{dim}_{\mathrm{H}}(\mathcal{A}) .
$$

- For $r=1, h$ is Lipschitz continuous. If h is bi-Lipschitz, then

$$
\operatorname{dim}_{H} h(\mathcal{A})=\operatorname{dim}_{H}(\mathcal{A}) .
$$

- Fractal geometry $\hat{=}$ study properties invariant under bi-Lipschitz trandformations.

Dimension and entropy

- For $\delta=2^{-n}$, simple δ-covering for $\mathcal{A} \subseteq 2^{\omega}$:

$$
A^{[n]}:=\left\{\alpha \upharpoonright_{n}: \alpha \in \mathcal{A}\right\} .
$$

Dimension and entropy

- For $\delta=2^{-n}$, simple δ-covering for $\mathcal{A} \subseteq 2^{\omega}$:

$$
A^{[n]}:=\left\{\alpha \upharpoonright_{n}: \alpha \in \mathcal{A}\right\} .
$$

- Minkowski- or box-counting dimension:

$$
\underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{A}):=\liminf _{n \rightarrow \infty} \frac{\log \left|A^{[n]}\right|}{n} .
$$

It holds that $\operatorname{dim}_{\mathrm{H}}(\mathcal{A}) \leq \underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{A})$.

Dimension and entropy

- For $\delta=2^{-n}$, simple δ-covering for $\mathcal{A} \subseteq 2^{\omega}$:

$$
A^{[n]}:=\left\{\alpha \upharpoonright_{n}: \alpha \in \mathcal{A}\right\} .
$$

- Minkowski- or box-counting dimension:

$$
\underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{A}):=\liminf _{n \rightarrow \infty} \frac{\log \left|A^{[n]}\right|}{n} .
$$

It holds that $\operatorname{dim}_{\mathrm{H}}(\mathcal{A}) \leq \underline{\operatorname{dim}}_{\mathrm{B}}(\mathcal{A})$.

- If \mathcal{A} is shift-invariant, $\underline{\operatorname{dim}}_{\mathrm{B}}$ is also called topological entropy, and for closed sets \mathcal{A} it holds that

$$
\operatorname{dim}_{H}(\mathcal{A})=\underline{\operatorname{dim}}_{B}(\mathcal{A}) .
$$

Dimension and entropy

- Given $p \in[0,1]$, let $\mu_{p}(p, 1-p)$-Bernoulli measure (product measure on 2^{ω} with $P[1]=p, P[0]=1-p$). Entropy $H\left(\mu_{p}\right)$ is defined as

$$
H\left(\mu_{p}\right)=-[p \log p+(1-p) \log (1-p)]
$$

Dimension and entropy

- Given $p \in[0,1]$, let $\mu_{p}(p, 1-p)$-Bernoulli measure (product measure on 2^{ω} with $P[1]=p, P[0]=1-p$). Entropy $H\left(\mu_{p}\right)$ is defined as

$$
H\left(\mu_{p}\right)=-[p \log p+(1-p) \log (1-p)] .
$$

- Theorem: [Eggleston] For $p \in[0,1]$ let

$$
\mathcal{B}=\left\{\alpha \in 2^{\omega}: \lim _{n \rightarrow \infty} \frac{|\{i \leq n: \alpha(i)=1\}|}{n}=p\right\} .
$$

Then

$$
\operatorname{dim}_{\mathrm{H}} \mathcal{B}=H\left(\mu_{p}\right) .
$$

Effective Hausdorff dimension

- Introduce effective coverings and define the notion of effective \mathcal{H}^{s}-measure 0 .

Effective Hausdorff dimension

- Introduce effective coverings and define the notion of effective \mathcal{H}^{s}-measure 0 .
- (Let $s \geq 0$ be rational.) $\mathcal{A} \subseteq 2^{\omega}$ is $\Sigma_{1}-\mathcal{H}^{s}$ null, $\Sigma_{1}^{0}-\mathcal{H}^{s}(\mathcal{A})=0$, if there is a recursive sequence $\left(C_{n}\right)$ of r.e. sets such that for each n,

$$
\mathcal{A} \subseteq \bigcup_{w \in C_{n}}[w] \quad \text { and } \quad \sum_{w \in C_{n}} 2^{-|w| s}<2^{-n} .
$$

Effective Hausdorff dimension

- Introduce effective coverings and define the notion of effective \mathcal{H}^{s}-measure 0 .
- (Let $s \geq 0$ be rational.) $\mathcal{A} \subseteq 2^{\omega}$ is $\Sigma_{1}-\mathcal{H}^{s}$ null, $\Sigma_{1}^{0}-\mathcal{H}^{s}(\mathcal{A})=0$, if there is a recursive sequence $\left(C_{n}\right)$ of r.e. sets such that for each n,

$$
\mathcal{A} \subseteq \bigcup_{w \in C_{n}}[w] \quad \text { and } \quad \sum_{w \in C_{n}} 2^{-|w| s}<2^{-n} .
$$

- Definition of effective Hausdorff dimension is straightforward:

$$
\operatorname{dim}_{\mathrm{H}}^{1}(\mathcal{A})=\inf \left\{s \geq 0: \Sigma_{1}^{0}-\mathcal{H}^{s}(\mathcal{A})=0\right\} .
$$

Properties of effective dimension

- Monotony is conserved. Obviously, also $\operatorname{dim}_{\mathrm{H}} \mathcal{A} \leq \operatorname{dim}_{\mathrm{H}}^{1} \mathcal{A}$.

Properties of effective dimension

- Monotony is conserved. Obviously, also $\operatorname{dim}_{\mathrm{H}} \mathcal{A} \leq \operatorname{dim}_{\mathrm{H}}^{1} \mathcal{A}$.
- Random sequences: $\Sigma_{1}^{0}-\mathcal{H}{ }^{1}$ corresponds to Martin-Löf's effective measure. A sequence α which is not $\Sigma_{1}^{0}-\mathcal{H}^{1}$-null is called Martin-Löf-random.
Obviously, if α is ML-random then $\operatorname{dim}_{\mathrm{H}}^{1} \alpha=1$.

Properties of effective dimension

- Monotony is conserved. Obviously, also $\operatorname{dim}_{\mathrm{H}} \mathcal{A} \leq \operatorname{dim}_{\mathrm{H}}^{1} \mathcal{A}$.
- Random sequences: $\Sigma_{1}^{0}-\mathcal{H}{ }^{1}$ corresponds to Martin-Löf's effective measure. A sequence α which is not $\Sigma_{1}^{0}-\mathcal{H}^{1}$-null is called Martin-Löf-random.
Obviously, if α is ML-random then $\operatorname{dim}_{\mathrm{H}}^{1} \alpha=1$.
- Stability: [Lutz] $\operatorname{dim}_{\mathrm{H}}^{1} \mathcal{A}=\sup _{\xi \in \mathcal{A}} \operatorname{dim}_{\mathrm{H}}^{1} \xi$

Follows from existence of maximal effective s-nulltests, i.e. a recursive sequence of r.e. sets $\left\{U_{n}^{s}\right\}$, for which

$$
\mathcal{A} \text { is } \Sigma_{1}^{0}-\mathcal{H}^{s} \text {-null } \quad \Longleftrightarrow \quad(\forall \alpha \in \mathcal{A}) \alpha \in \bigcap_{n}\left[U_{n}^{s}\right] .
$$

Algorithmic entropy

- Kolmogorov complexity: Let U be a universal Turing machine. For a string σ define

$$
C(\sigma)=C_{U}(\sigma)=\min \left\{|p|: p \in 2^{<\omega}, U(p)=\sigma\right\},
$$

i.e. $C(\sigma)$ is the length of the shortest U-program for σ. (Independent (up to an additiv constant) of the choice of U.)

Algorithmic entropy

- Kolmogorov complexity: Let U be a universal Turing machine. For a string σ define

$$
C(\sigma)=C_{U}(\sigma)=\min \left\{|p|: p \in 2^{<\omega}, U(p)=\sigma\right\},
$$

i.e. $C(\sigma)$ is the length of the shortest U-program for σ. (Independent (up to an additiv constant) of the choice of U.)

- Variant: prefix-free complexity K. Based on prefix-free Turing-machines - no two converging inputs are prefixes of one another.

Entropy and randomness

- Schnorr's Theorem:

$$
\alpha \text { ML-random } \quad \Leftrightarrow \quad(\exists c)(\forall n) K\left(\alpha \upharpoonright_{n}\right) \geq n-c .
$$

Kolmogorov complexity and coding

- The domain of a prefix-free Turing machine is a prefix-free code.

Kolmogorov complexity and coding

- The domain of a prefix-free Turing machine is a prefix-free code.
- Kraft-Chaitin Theorem: $\left\{\sigma_{i}\right\}_{i \in \mathbb{N}}$ set of strings, $\left\{l_{i}, l_{2}, \ldots\right\}$ sequence of natural numbers ('lengths') such that

$$
\sum_{i \in \mathbb{N}} 2^{-l_{i}} \leq 1,
$$

then one can construct (primitive recursively) a prefix-free TM M and strings $\left\{\tau_{i}\right\}_{i \in \mathbb{N}}$, such that

$$
\left|\tau_{i}\right|=l_{i} \quad \text { and } \quad M\left(\tau_{i}\right)=\sigma_{i} .
$$

Kolmogorov complexity and coding

- Semimeasure: $m: 2^{<\omega} \rightarrow[0, \infty)$ with

$$
\sum_{\sigma \in 2^{<\omega}} m(\sigma) \leq 1
$$

Kolmogorov complexity and coding

- Semimeasure: $m: 2^{<\omega} \rightarrow[0, \infty)$ with

$$
\sum_{\sigma \in 2^{<\omega}} m(\sigma) \leq 1 .
$$

- There exists a maximal enumerable semimeasure \widetilde{m}, i.e. \widetilde{m} is enumerable from below, and for any enumerable semimeasure m it holds that $m \leq c_{m} \widetilde{m}$ for some constant c_{m}.

Kolmogorov complexity and coding

- Semimeasure: $m: 2^{<\omega} \rightarrow[0, \infty)$ with

$$
\sum_{\sigma \in 2^{<\omega}} m(\sigma) \leq 1 .
$$

- There exists a maximal enumerable semimeasure \widetilde{m}, i.e. \widetilde{m} is enumerable from below, and for any enumerable semimeasure m it holds that $m \leq c_{m} \widetilde{m}$ for some constant c_{m}.
- Coding Theorem: [Zvonkin-Levin]

$$
K(\sigma)=-\log \widetilde{m}(\sigma)+c .
$$

'Main theorem' of effective dimension

- Theorem: [Ryabko; Staiger; Mayordomo]

For all $\xi \in 2^{\omega}$

$$
\operatorname{dim}_{\mathrm{H}}^{1}(\xi)=\liminf _{n \rightarrow \infty} \frac{K\left(\xi \upharpoonright_{n}\right)}{n} .
$$

'Main theorem' of effective dimension

- Theorem: [Ryabko; Staiger; Mayordomo]

For all $\xi \in 2^{\omega}$

$$
\operatorname{dim}_{\mathrm{H}}^{1}(\xi)=\liminf _{n \rightarrow \infty} \frac{K\left(\xi \upharpoonright_{n}\right)}{n} .
$$

- K can be replaced by C, since

$$
C(\sigma) \leq K(\sigma) \leq C(\sigma)+2 \log C(\sigma) .
$$

An easy proof

- It holds that \mathcal{A} has effective s-dim. Hausdorff measure 0 iff there exists a discrete semimeasure m enumerable from below such that for any $\alpha \in \mathcal{A}$,

$$
\limsup _{n \rightarrow \infty} \frac{m\left(\alpha \upharpoonright_{n}\right)}{2^{-s n}}=\infty .
$$

An easy proof

- It holds that \mathcal{A} has effective s-dim. Hausdorff measure 0 iff there exists a discrete semimeasure m enumerable from below such that for any $\alpha \in \mathcal{A}$,

$$
\limsup _{n \rightarrow \infty} \frac{m\left(\alpha \Gamma_{n}\right)}{2^{-s n}}=\infty
$$

- Hence,

$$
\operatorname{dim}_{\mathrm{H}}^{1}(\beta)<s \quad \Longleftrightarrow \quad \limsup _{n \rightarrow \infty} \frac{\tilde{m}\left(\beta \upharpoonright_{n}\right)}{2^{-n s}}=\infty
$$

An easy proof

- It holds that \mathcal{A} has effective s-dim. Hausdorff measure 0 iff there exists a discrete semimeasure m enumerable from below such that for any $\alpha \in \mathcal{A}$,

$$
\limsup _{n \rightarrow \infty} \frac{m\left(\alpha \upharpoonright_{n}\right)}{2^{-s n}}=\infty
$$

- Hence,

$$
\operatorname{dim}_{\mathrm{H}}^{1}(\beta)<s \quad \Longleftrightarrow \quad \limsup _{n \rightarrow \infty} \frac{\widetilde{m}\left(\beta \upharpoonright_{n}\right)}{2^{-n s}}=\infty .
$$

- Using the Coding Theorem, this is equivalent to

$$
(\exists n)\left[K\left(\beta \upharpoonright_{n}\right) / n<s\right] .
$$

An easy proof

- On the other hand, suppose that
$\liminf _{n \rightarrow \infty} K\left(\beta \upharpoonright_{n}\right) / n<s$.
$n \rightarrow \infty$

An easy proof

- On the other hand, suppose that

$$
\liminf _{n \rightarrow \infty} K\left(\beta \upharpoonright_{n}\right) / n<s
$$

- Define

$$
C=\left\{w \in 2^{<\omega}: K(w)<|w| s\right\} .
$$

An easy proof

- On the other hand, suppose that

$$
\liminf _{n \rightarrow \infty} K\left(\beta \upharpoonright_{n}\right) / n<s
$$

- Define

$$
C=\left\{w \in 2^{<\omega}: K(w)<|w| s\right\} .
$$

- C is r.e. and it holds that $\sum_{w \in C} 2^{-|w| s} \leq 1$.

An easy proof

- On the other hand, suppose that

$$
\liminf _{n \rightarrow \infty} K\left(\beta \upharpoonright_{n}\right) / n<s
$$

- Define

$$
C=\left\{w \in 2^{<\omega}: K(w)<|w| s\right\} .
$$

- C is r.e. and it holds that $\sum_{w \in C} 2^{-|w| s} \leq 1$.
- Extract an effective s-test for β from C by defining C_{n} to contain all strings w that have 2^{n} predecessors already enumerated by the time they are enumerated in C.

Two examples

- 'Diluted’ randomness: ξ ML-random, define

$$
\widehat{\xi}=\xi(0) 0 \xi(1) 0 \xi(2) 0 \ldots
$$

Then $\operatorname{dim}_{\mathrm{H}}^{1} \widehat{\xi}=1 / 2$. (Use K-complexity or Hölder property.)

Two examples

- 'Diluted’ randomness: ξ ML-random, define

$$
\widehat{\xi}=\xi(0) 0 \xi(1) 0 \xi(2) 0 \ldots
$$

Then $\operatorname{dim}_{\mathrm{H}}^{1} \widehat{\xi}=1 / 2$. (Use K-complexity or Hölder property.)

- Eggleston's sequneces: $\mu_{p}(p, 1-p)$-Bernoulli measure (p rational). Then, for all μ_{p}-random sequence ξ,

$$
\operatorname{dim}_{H}^{1} \xi=H\left(\mu_{p}\right) .
$$

Degrees and lower cones

- $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive. Def. $\alpha \oplus_{z} \beta$: unique γ such that

$$
\gamma \upharpoonright_{Z}=\alpha \quad \text { and } \quad \gamma \upharpoonright_{Z^{\mathrm{C}}}=\beta .
$$

Degrees and lower cones

- $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive.

Def. $\alpha \oplus_{z} \beta$: unique γ such that

$$
\gamma \upharpoonright_{Z}=\alpha \quad \text { and } \quad \gamma \upharpoonright_{Z} \mathbf{c}=\beta .
$$

- Theorem: If $\lim _{n \rightarrow \infty} \frac{1}{n}|Z \cap\{0, \ldots, n-1\}|=\delta$, then

$$
\operatorname{dim}_{\mathrm{H}}^{1} \alpha \oplus Z \beta \geq \delta \operatorname{dim}_{\mathrm{H}}^{1} \alpha+(1-\delta) \operatorname{dim}_{\mathrm{H}}^{1, \alpha} \beta .
$$

Degrees and lower cones

- $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive.

Def. $\alpha \oplus_{z} \beta$: unique γ such that

$$
\gamma \upharpoonright_{Z}=\alpha \quad \text { and } \quad \gamma \upharpoonright_{Z}=\beta .
$$

- Theorem: If $\lim _{n \rightarrow \infty} \frac{1}{n}|Z \cap\{0, \ldots, n-1\}|=\delta$, then

$$
\operatorname{dim}_{\mathrm{H}}^{1} \alpha \oplus Z \beta \geq \delta \operatorname{dim}_{\mathrm{H}}^{1} \alpha+(1-\delta) \operatorname{dim}_{\mathrm{H}}^{1, \alpha} \beta .
$$

- proof: use symmetry of algorithmic information.

$$
K(x, y)=K(x)+K(y \mid x, K(x))+c .
$$

Degrees and lower cones

- $Z \subseteq \mathbb{N}$ infinite, co-infinite, recursive.

Def. $\alpha \oplus_{z} \beta$: unique γ such that

$$
\gamma \upharpoonright_{Z}=\alpha \quad \text { and } \quad \gamma \upharpoonright_{Z^{\mathrm{C}}}=\beta .
$$

- Theorem: If $\lim _{n \rightarrow \infty} \frac{1}{n}|Z \cap\{0, \ldots, n-1\}|=\delta$, then

$$
\operatorname{dim}_{\mathrm{H}}^{1} \alpha \oplus Z \beta \geq \delta \operatorname{dim}_{\mathrm{H}}^{1} \alpha+(1-\delta) \operatorname{dim}_{\mathrm{H}}^{1, \alpha} \beta .
$$

- proof: use symmetry of algorithmic information.

$$
K(x, y)=K(x)+K(y \mid x, K(x))+c .
$$

- Theorem: For all $\alpha \in 2^{\omega}, \operatorname{dim}_{\mathrm{H}}^{1}\left(\alpha \bar{\Xi}_{\mathrm{T}}\right)=\operatorname{dim}_{\mathrm{H}}^{1}\left(\leq_{\mathrm{T}} A\right)$

Degrees and lower cones

- Terwijn showed that the lower $t t$-span of the halting problem K contains a Martin-Löf random sequence.

Degrees and lower cones

- Terwijn showed that the lower $t t$-span of the halting problem K contains a Martin-Löf random sequence.
- On the other hand, K does not $t t$-reduce to a Martin-Löf random sequence (Bennet; Juedes,Lathrop, and Lutz), which implies that $K{ }_{\overline{\mathrm{It}}}$ is a Martin-Löf nullclass.

Degrees and lower cones

- Terwijn showed that the lower $t t$-span of the halting problem K contains a Martin-Löf random sequence.
- On the other hand, K does not $t t$-reduce to a Martin-Löf random sequence (Bennet; Juedes,Lathrop, and Lutz), which implies that $K \overline{\#}_{\text {t }}$ is a Martin-Löf nullclass.
- Corollary: $K{ }^{\equiv_{\mathrm{t}}}$ is ML-null but $\operatorname{dim}_{\mathrm{H}}^{1} K{ }_{\overline{\mathrm{I}}_{\mathrm{t}}}=1$.

Degrees and lower cones

- Terwijn showed that the lower $t t$-span of the halting problem K contains a Martin-Löf random sequence.
- On the other hand, K does not $t t$-reduce to a Martin-Löf random sequence (Bennet; Juedes,Lathrop, and Lutz), which implies that $K \overline{\#}_{\text {t }}$ is a Martin-Löf nullclass.
- Corollary: $K{ }^{\equiv_{\mathrm{t}}}$ is ML-null but $\operatorname{dim}_{\mathrm{H}}^{1} K{ }_{\overline{\mathrm{I}}_{\mathrm{t}}}=1$.
- Theorem: $\operatorname{dim}_{\mathrm{H}}^{1} \leq_{\mathrm{bt}} K=0$ (and hence $\operatorname{dim}_{\mathrm{H}}^{1} K \bar{छ}_{\mathrm{bt}}=0$).

A lower cone of dimension 0

- A sequence $\omega \in 2^{\omega}$ is 1 -generic if for every r.e. set $U \subseteq 2^{<\omega}$ it holds that
$(\exists x \sqsubset \omega)[x \in U$ or no extension of x is in $U]$.

A lower cone of dimension 0

- A sequence $\omega \in 2^{\omega}$ is 1 -generic if for every r.e. set $U \subseteq 2^{<\omega}$ it holds that

$$
(\exists x \sqsubset \omega)[x \in U \text { or no extension of } x \text { is in } U] .
$$

- Theorem: If $\xi \in 2^{\omega}$ is 1 -generic, then

$$
\beta \leq_{\mathrm{T}} \xi \Rightarrow \operatorname{dim}_{\mathrm{H}}^{1} \beta=0,
$$

which is equivalent to $\operatorname{dim}_{\mathrm{H}}^{1}\left(\leq_{T} \xi\right)=0$.

A lower cone of dimension 0

- A sequence $\omega \in 2^{\omega}$ is 1 -generic if for every r.e. set $U \subseteq 2^{<\omega}$ it holds that

$$
(\exists x \sqsubset \omega)[x \in U \text { or no extension of } x \text { is in } U] .
$$

- Theorem: If $\xi \in 2^{\omega}$ is 1 -generic, then

$$
\beta \leq_{\mathrm{T}} \xi \quad \Rightarrow \quad \operatorname{dim}_{\mathrm{H}}^{1} \beta=0,
$$

which is equivalent to $\operatorname{dim}_{\mathrm{H}}^{1}\left(\leq_{T} \xi\right)=0$.

- Proof uses result by Kucera and Demuth: If ω is 1 -generic and $\beta \leq_{\mathrm{T}} \omega$, then any simple set $S \subseteq 2^{<\omega}$ contains a string w such that $w \sqsubset \beta$.

Cones of non-integral dimension

- For many-one reducibility, we can show the existence of lower cones of non-integral dimension.

Cones of non-integral dimension

- For many-one reducibility, we can show the existence of lower cones of non-integral dimension.
- Theorem: Let $\mu_{\vec{p}}, \vec{p}=\left(p_{0}, p_{1}, \ldots\right)$, be a computable generalized Bernoulli measure with limit frequency p. If α is $\mu_{\vec{p}}$-random, then

$$
\operatorname{dim}_{\mathrm{H}}^{1}\left(\leq_{\mathrm{m}} \alpha\right)=H\left(\mu_{\vec{p}}\right) .
$$

Cones of non-integral dimension

- For many-one reducibility, we can show the existence of lower cones of non-integral dimension.
- Theorem: Let $\mu_{\vec{p}}, \vec{p}=\left(p_{0}, p_{1}, \ldots\right)$, be a computable generalized Bernoulli measure with limit frequency p. If α is $\mu_{\vec{p}}$-random, then

$$
\operatorname{dim}_{\mathrm{H}}^{1}\left(\leq_{\mathrm{m}} \alpha\right)=H\left(\mu_{\vec{p}}\right) .
$$

- Proof: We know that $\operatorname{dim}_{\mathrm{H}}^{1} \alpha=H\left(\mu_{\vec{p}}\right)$. Furthermore, α is Kolmogorov-Loveland stochastic with respect to $\mu_{\vec{p}}$.

Cones of non-integral dimension

- How about weak reducibilities, especially Turing?

Cones of non-integral dimension

- How about weak reducibilities, especially Turing?
- Touches a different aspect:

How random are sequences of positive dimension?
Are they random with respect to some computable measure?

Cones of non-integral dimension

- How about weak reducibilities, especially Turing?
- Touches a different aspect:

How random are sequences of positive dimension?
Are they random with respect to some computable measure?

- Theorem: [Levin]

Every sequence which is random relative to some computable measure computes a Martin-Löf random sequence.

Cones of non-integral dimension

- How about weak reducibilities, especially Turing?
- Touches a different aspect:

How random are sequences of positive dimension?
Are they random with respect to some computable measure?

- Theorem: [Levin]

Every sequence which is random relative to some computable measure computes a Martin-Löf random sequence.

- If the measure is computable and non-atomic, the reduction is even truth-table.

Entropy and randomness

- Investigate the relation between entropy and randomness beyond Schnorr's Theorem.

Entropy and randomness

- Investigate the relation between entropy and randomness beyond Schnorr's Theorem.
- Is every sequence of positive dimension random with respect to some computable measure?

Entropy and randomness

- Investigate the relation between entropy and randomness beyond Schnorr's Theorem.
- Is every sequence of positive dimension random with respect to some computable measure?
- Negative answer:

Theorem: For each $s \in(0,1]$, there exists an sequence of dimension s not random with respect to any computable measure.

Entropy and randomness

- Investigate the relation between entropy and randomness beyond Schnorr's Theorem.
- Is every sequence of positive dimension random with respect to some computable measure?
- Negative answer:

Theorem: For each $s \in(0,1]$, there exists an sequence of dimension s not random with respect to any computable measure.

- Uses: If $\zeta \in 2^{\omega}$ is 1-generic, then, for any $\omega \in 2^{\omega}$ and any computable, infinite, co-infinite set $Z \subseteq \mathbb{N}, \zeta \oplus_{Z} \omega$ is not a natural sequence.

Entropy and randomness

- On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.

Entropy and randomness

- On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.
- Theorem: [R-Slaman] There is a recursive (probability) measure μ and a nonrecursive sequence α such that the following conditions hold.

Entropy and randomness

- On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.
- Theorem: [R-Slaman] There is a recursive (probability) measure μ and a nonrecursive sequence α such that the following conditions hold.
(1) α is μ-random.

Entropy and randomness

- On the other hand, randomness with respect to a computable measure does not imply non-trivial entropy.
- Theorem: [R-Slaman] There is a recursive (probability) measure μ and a nonrecursive sequence α such that the following conditions hold.
(1) α is μ-random.
(2) For every nondecreasing, nonconstant, recursive function g, there is an n such that

$$
K\left(\alpha \upharpoonright_{n}\right) \leq g(n)
$$

Generalized randomness

- One can extend the notion of randomness to arbitrary measures.

Generalized randomness

- One can extend the notion of randomness to arbitrary measures.
- Fix a suitable representation of measures and consider Martin-Löf tests enumerable in that representation.

Generalized randomness

- One can extend the notion of randomness to arbitrary measures.
- Fix a suitable representation of measures and consider Martin-Löf tests enumerable in that representation.
- However, it turns out that arbitrary randomness is to 'coarse'. It can only distinguish between recursive and non-recursive sequences.

Generalized randomness

- Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:

Generalized randomness

- Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:
(1) There is a (probability) measure μ on 2^{ω} such that α is not a μ-atom and α is μ-random.

Generalized randomness

- Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:
(1) There is a (probability) measure μ on 2^{ω} such that α is not a μ-atom and α is μ-random.
(2) α is not computable.

Generalized randomness

- Theorem: [R-Slaman] For $\alpha \in 2^{\omega}$, the following are equivalent:
(1) There is a (probability) measure μ on 2^{ω} such that α is not a μ-atom and α is μ-random.
(2) α is not computable.
- Can we at least bound the complexity of a measure rendering a sequence of positive dimension random?

Randomness for positive dimension

- Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A})>0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

$$
\left(\forall w \in 2^{<\omega}\right)\left[\mu[w] \leq 2^{-|w| s}\right] .
$$

Randomness for positive dimension

- Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A})>0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

$$
\left(\forall w \in 2^{<\omega}\right)\left[\mu[w] \leq 2^{-|w| s}\right] .
$$

- Analyzing the proof yields the following effective version.

Randomness for positive dimension

- Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A})>0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

$$
\left(\forall w \in 2^{<\omega}\right)\left[\mu[w] \leq 2^{-|w| s}\right] .
$$

- Analyzing the proof yields the following effective version.
- Theorem: Any sequence $\alpha \in 2^{\omega}$ with $\operatorname{dim}_{\mathrm{H}}^{1} \alpha>0$ computes a measure μ such that

Randomness for positive dimension

- Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A})>0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

$$
\left(\forall w \in 2^{<\omega}\right)\left[\mu[w] \leq 2^{-|w| s}\right] .
$$

- Analyzing the proof yields the following effective version.
- Theorem: Any sequence $\alpha \in 2^{\omega}$ with $\operatorname{dim}_{H}^{1} \alpha>0$ computes a measure μ such that
(1) α is μ-random,

Randomness for positive dimension

- Frostman's Lemma: Let $\mathcal{A} \subseteq 2^{\omega}$ be compact. Then $\mathcal{H}^{s}(\mathcal{A})>0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

$$
\left(\forall w \in 2^{<\omega}\right)\left[\mu[w] \leq 2^{-|w| s}\right] .
$$

- Analyzing the proof yields the following effective version.
- Theorem: Any sequence $\alpha \in 2^{\omega}$ with $\operatorname{dim}_{H}^{1} \alpha>0$ computes a measure μ such that
(1) α is μ-random,
(2) μ is Δ_{2}^{0} (relative to α).

Extracting randomness

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?

Extracting randomness

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.

Extracting randomness

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.
- Theorem: [R-Slaman] There is a recursive, nondecreasing, unbounded function $h: \mathbb{N} \rightarrow \mathbb{N}$ and a sequence α such that the following conditions hold.

Extracting randomness

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.
- Theorem: [R-Slaman] There is a recursive, nondecreasing, unbounded function $h: \mathbb{N} \rightarrow \mathbb{N}$ and a sequence α such that the following conditions hold.
(1) For all $n, K\left(\alpha \upharpoonright_{n}\right) \geq h(n)$.

Extracting randomness

- Open problem: Does every sequence of positive dimension compute a Martin-Löf random sequence?
- For very weak positive entropy, the answer is negative.
- Theorem: [R-Slaman] There is a recursive, nondecreasing, unbounded function $h: \mathbb{N} \rightarrow \mathbb{N}$ and a sequence α such that the following conditions hold.
(1) For all $n, K\left(\alpha \Gamma_{n}\right) \geq h(n)$.
(2) α does not Turing-compute a ML-random sequence.

Extracting randomness

- General task: Classify the sequences which compute a Martin-Löf random sequence.

Extracting randomness

- General task: Classify the sequences which compute a Martin-Löf random sequence.
- Started with Von Neumann's idea how to turn a biased coin into an unbiased one.

