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Random reals and random sequences

When we speak of random reals, we usually mean a
random infinite binary sequence (which represents a
real).
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random infinite binary sequence (which represents a
real).

Justification: randomness is base invariant. The g-ary
expansion of a real number is ML-random iff the h-ary is
(g, h ≥ 2).
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Random reals and random sequences

When we speak of random reals, we usually mean a
random infinite binary sequence (which represents a
real).

Justification: randomness is base invariant. The g-ary
expansion of a real number is ML-random iff the h-ary is
(g, h ≥ 2).

This invariance constrasts normality, which is not
base-independent. (Cassels, 1959).
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Random reals and random sequences

When we speak of random reals, we usually mean a
random infinite binary sequence (which represents a
real).

Justification: randomness is base invariant. The g-ary
expansion of a real number is ML-random iff the h-ary is
(g, h ≥ 2).

This invariance constrasts normality, which is not
base-independent. (Cassels, 1959).

Base-invariance of randomness has been proved by a
number of people: Calude and Jürgensen (1994), Staiger
(1998), Hertling and Weihrauch (1998).
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Conservation of randomness

Base-invariance is already implicit in a fundamental result
by Levin (1974): Conservation of randomness.
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Conservation of randomness

Base-invariance is already implicit in a fundamental result
by Levin (1974): Conservation of randomness.

Let µ be a measure on 2ω, Φ : 2ω → 2ω a transformation.
This induces an image measure µΦ:

µΦ[σ] = µΦ−1[σ]
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Conservation of randomness

Base-invariance is already implicit in a fundamental result
by Levin (1974): Conservation of randomness.

Let µ be a measure on 2ω, Φ : 2ω → 2ω a transformation.
This induces an image measure µΦ:

µΦ[σ] = µΦ−1[σ]

Theorem: [Levin] If Φ is computable and ξ is µ-random,
then Φξ is µΦ-random.

Random Functions – p.3



Continued fractions

There is another important representation of reals: The
continued fraction expansion.
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Continued fractions

There is another important representation of reals: The
continued fraction expansion.

For α ∈ R, let [α] denote the integral part, and {α} denote
the non-integral part of α, so α = [α] + {α}, [α] ∈ Z,
{α} ∈ [0, 1).
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Continued fractions

There is another important representation of reals: The
continued fraction expansion.

For α ∈ R, let [α] denote the integral part, and {α} denote
the non-integral part of α, so α = [α] + {α}, [α] ∈ Z,
{α} ∈ [0, 1).

Given α, set α0 = α and let, for n ≥ 0,

an = [αn] and αn+1 =
1

{αn}
.

(Stop if {αn} = 0.)
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Continued fractions

There is another important representation of reals: The
continued fraction expansion.

For α ∈ R, let [α] denote the integral part, and {α} denote
the non-integral part of α, so α = [α] + {α}, [α] ∈ Z,
{α} ∈ [0, 1).

Given α, set α0 = α and let, for n ≥ 0,

an = [αn] and αn+1 =
1

{αn}
.

(Stop if {αn} = 0.)

The process is finite iff α is rational.
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The continued fraction expansion

For irrational numbers, the partial convergents

[a0, a1, . . . an] :=
pn

qn
= a0 +

1

a1 +
1

a2 +
1

a3 + . . .
1

an

ai ∈ N

converge to α.
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The continued fraction expansion

For irrational numbers, the partial convergents

[a0, a1, . . . an] :=
pn

qn
= a0 +

1

a1 +
1

a2 +
1

a3 + . . .
1

an

ai ∈ N

converge to α.

The continued fraction expansion induces a bijection
between the irrational reals and the set of all infinite
sequences of natural numbers, the Baire space NN.
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A few examples

Continued fractions are extremely important in number
theory. (We will see later why.)
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A few examples

Continued fractions are extremely important in number
theory. (We will see later why.)

Golden mean (1 +
√

5)/2 = [1, 1, 1, 1, . . . ].
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A few examples

Continued fractions are extremely important in number
theory. (We will see later why.)

Golden mean (1 +
√

5)/2 = [1, 1, 1, 1, . . . ].
√

2/2 = [1, 2, 2, 2, . . . ].
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A few examples

Continued fractions are extremely important in number
theory. (We will see later why.)

Golden mean (1 +
√

5)/2 = [1, 1, 1, 1, . . . ].
√

2/2 = [1, 2, 2, 2, . . . ].

e mod 1 = [1, 2, 1, 1, 4, 1, 1, 6, . . . ].
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A few examples

Continued fractions are extremely important in number
theory. (We will see later why.)

Golden mean (1 +
√

5)/2 = [1, 1, 1, 1, . . . ].
√

2/2 = [1, 2, 2, 2, . . . ].

e mod 1 = [1, 2, 1, 1, 4, 1, 1, 6, . . . ].

π mod 1 = [7, 15, 1, 292, 1, 1, . . . ].
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Random continued fractions

As the transformation is effective, we would expect
invariance to hold for continued fractions (cf), too.
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As the transformation is effective, we would expect
invariance to hold for continued fractions (cf), too.

But: what is a random continued fraction?

Random Functions – p.7



Random continued fractions

As the transformation is effective, we would expect
invariance to hold for continued fractions (cf), too.

But: what is a random continued fraction?

One can think of two possibilities to define this:
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Random continued fractions

As the transformation is effective, we would expect
invariance to hold for continued fractions (cf), too.

But: what is a random continued fraction?

One can think of two possibilities to define this:

Say a cf is random if the sequence obtained by the
binary expansion of the accordant real is random.
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The ‘randomness machinery’

Measure theoretic [Martin-Löf]:
A sequence is random if it is not an effective nullset.

Random Functions – p.8



The ‘randomness machinery’

Measure theoretic [Martin-Löf]:
A sequence is random if it is not an effective nullset.

Information theoretic [Kolmogorov; Levin; Chaitin]
A sequence is random if it is incompressible.
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The ‘randomness machinery’

Measure theoretic [Martin-Löf]:
A sequence is random if it is not an effective nullset.

Information theoretic [Kolmogorov; Levin; Chaitin]
A sequence is random if it is incompressible.

Schnorr’s Theorem: Both approaches yield the same
concept.
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The ‘randomness machinery’

Measure theoretic [Martin-Löf]:
A sequence is random if it is not an effective nullset.

Information theoretic [Kolmogorov; Levin; Chaitin]
A sequence is random if it is incompressible.

Schnorr’s Theorem: Both approaches yield the same
concept.

Key ingredient to the proof: Coding Theorem
[Zvonkin-Levin].
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Measure on Baire Space

Basic open cylinders: convergents of continued
fractions, [a0, . . . an].
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Measure on Baire Space

Basic open cylinders: convergents of continued
fractions, [a0, . . . an].

In the following, identify an initial segment [a1, . . . , an] of
a continued fraction with the n-convergent

pn

qn
=

1

a1 +
1

a2 +
1

a3 + . . .
1

an

.
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Measure on Baire Space

Basic open cylinders: convergents of continued
fractions, [a0, . . . an].

In the following, identify an initial segment [a1, . . . , an] of
a continued fraction with the n-convergent

pn

qn
=

1

a1 +
1

a2 +
1

a3 + . . .
1

an

.

The diameter of a cylinder (as a subset of [0, 1]) is:

diam[a0, . . . an] =
1

qn(qn + qn−1)
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Effective measure

A set A ⊆ NN is effectively null, if there is a recursive
sequence (Cn) of r.e. sets such that for each n,

A ⊆
⋃

w∈Cn

[w] and
∑

w∈Cn

diam[w] ≤ 2−n.
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Effective measure

A set A ⊆ NN is effectively null, if there is a recursive
sequence (Cn) of r.e. sets such that for each n,

A ⊆
⋃

w∈Cn

[w] and
∑

w∈Cn

diam[w] ≤ 2−n.

A cf α is random if {α} ⊆ NN is not effectively null.
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Random Continued Fractions

Initial question: Is randomness invariant with respect to
different representations (g-adic, continued fraction) of a
real?
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Random Continued Fractions

Initial question: Is randomness invariant with respect to
different representations (g-adic, continued fraction) of a
real?

Problem: The continued fraction expansion might code
things more efficiently.
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Comparing expansions

Let θ be irrational. Suppose E2(θ)↾n= θ1θ2 . . . θn are the
first n digits of its binary expansion. Set

rn = rn(θ) =
n

∑

i=1

θi2
−i and sn = sn(θ) =

n
∑

i=1

θi2
−i +

1

2n
.
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Comparing expansions

Let θ be irrational. Suppose E2(θ)↾n= θ1θ2 . . . θn are the
first n digits of its binary expansion. Set

rn = rn(θ) =
n

∑

i=1

θi2
−i and sn = sn(θ) =

n
∑

i=1

θi2
−i +

1

2n
.

rn and sn are rational, hence their continued fraction
expansions finite. Assume

CF(rn) = [a1, a2, . . . , ak] and CF(sn) = [b1, b2, . . . , bl].
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Comparing expansions

Let θ be irrational. Suppose E2(θ)↾n= θ1θ2 . . . θn are the
first n digits of its binary expansion. Set

rn = rn(θ) =
n

∑

i=1

θi2
−i and sn = sn(θ) =

n
∑

i=1

θi2
−i +

1

2n
.

rn and sn are rational, hence their continued fraction
expansions finite. Assume

CF(rn) = [a1, a2, . . . , ak] and CF(sn) = [b1, b2, . . . , bl].

Let N = max{j : aj = bj} and set πn(θ) = [a1, . . . , aN ].
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Comparing expansions

We cannot simply convert E2(θ)↾n into a continued
fraction.
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Comparing expansions

We cannot simply convert E2(θ)↾n into a continued
fraction.

Let θ = 3
√

2 − 1 = 0.259921 . . . (decimal expansion). We
have

r5 = 0.25992 and s5 = 0.25993.
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Comparing expansions

We cannot simply convert E2(θ)↾n into a continued
fraction.

Let θ = 3
√

2 − 1 = 0.259921 . . . (decimal expansion). We
have

r5 = 0.25992 and s5 = 0.25993.

The continued fraction algorithm yields

CF(r5) = [3, 1, 5, 1, 1, 4, 2, 5, 1, 3]

CF(s5) = [3, 1, 5, 1, 1, 5, 5, 1, 2, 1, 4, 3].

Therefore π5(θ) = [3, 1, 5, 1, 1].
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Comparing expansions

Question: How does |πn(ξ)| relate to n?
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Comparing expansions

Question: How does |πn(ξ)| relate to n?

Theorem: [Lochs] For almost every ξ ∈ 2ω,

lim
n→∞

|πn(ξ)|
n

=
6 log2 2

π2
.
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Comparing expansions

Question: How does |πn(ξ)| relate to n?

Theorem: [Lochs] For almost every ξ ∈ 2ω,

lim
n→∞

|πn(ξ)|
n

=
6 log2 2

π2
.

At the heart of Lochs’ result lies a fundamental fact
about the asymptotic behaviour of the partial
convergents.
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Comparing expansions

Question: How does |πn(ξ)| relate to n?

Theorem: [Lochs] For almost every ξ ∈ 2ω,

lim
n→∞

|πn(ξ)|
n

=
6 log2 2

π2
.

At the heart of Lochs’ result lies a fundamental fact
about the asymptotic behaviour of the partial
convergents.

Theorem: [Khintchine] For almost every α ∈ R,

1

n
log qn(α) −→ π2

12 log 2
.
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Digression: Ergodic Theorem

Let (X,µ) be some measure space (Borel), T : X → X

µ-preserving, that is, µA = µT−1A for all A Borel. T is
ergodic if TA = A implies µA ∈ {0, 1}.

Random Functions – p.15



Digression: Ergodic Theorem

Let (X,µ) be some measure space (Borel), T : X → X

µ-preserving, that is, µA = µT−1A for all A Borel. T is
ergodic if TA = A implies µA ∈ {0, 1}.

Theorem: [Birkhoff] For any continous f : X → R,
ergodic T , and µ-almost every x ∈ X, it holds that

1

n

n−1
∑

i=0

f(T ix) −→
∫

fdµ.
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Digression: Ergodic Theorem

Let (X,µ) be some measure space (Borel), T : X → X

µ-preserving, that is, µA = µT−1A for all A Borel. T is
ergodic if TA = A implies µA ∈ {0, 1}.

Theorem: [Birkhoff] For any continous f : X → R,
ergodic T , and µ-almost every x ∈ X, it holds that

1

n

n−1
∑

i=0

f(T ix) −→
∫

fdµ.

Gauss map x 7→ 1
x

mod 1 describes the shift map for
continued fractions. Its entropy is π2/6 log 2.
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Digression: Ergodic Theorem

Let (X,µ) be some measure space (Borel), T : X → X

µ-preserving, that is, µA = µT−1A for all A Borel. T is
ergodic if TA = A implies µA ∈ {0, 1}.

Theorem: [Birkhoff] For any continous f : X → R,
ergodic T , and µ-almost every x ∈ X, it holds that

1

n

n−1
∑

i=0

f(T ix) −→
∫

fdµ.

Gauss map x 7→ 1
x

mod 1 describes the shift map for
continued fractions. Its entropy is π2/6 log 2.

However, the ergodic theorem is not effective (Vyugin,
1998).
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Proving Invariance

Theorem: The set of irrational numbers θ that do not
satisfy Lochs’ theorem is an effective nullset.
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Proving Invariance

Theorem: The set of irrational numbers θ that do not
satisfy Lochs’ theorem is an effective nullset.

Theorem: [Faivre] For all ε > 0, there exist positive
constants c, δ (depending on ε) with 0 < δ < 1 such that

λ

({

ξ ∈ R :

∣

∣

∣

∣

|πnθ|
n

− L

∣

∣

∣

∣

≥ ε

})

≤ cδn

for all integers n ≥ 1 and with L = 6 log2 2/π2.
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Proving Invariance

Theorem: The set of irrational numbers θ that do not
satisfy Lochs’ theorem is an effective nullset.

Theorem: [Faivre] For all ε > 0, there exist positive
constants c, δ (depending on ε) with 0 < δ < 1 such that

λ

({

ξ ∈ R :

∣

∣

∣

∣

|πnθ|
n

− L

∣

∣

∣

∣

≥ ε

})

≤ cδn

for all integers n ≥ 1 and with L = 6 log2 2/π2.

Result is based on transfer operators (Mayer, Ruelle).
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Properties of random continued fractions

The use of transfer operators allows to effectivize a lot
of results on continued fractions.
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Properties of random continued fractions

The use of transfer operators allows to effectivize a lot
of results on continued fractions.

Theorem: A random cf must have arbitrary large partial
quotients, i.e. the numbers occuring in a typical cf are
unbounded.
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Properties of random continued fractions

The use of transfer operators allows to effectivize a lot
of results on continued fractions.

Theorem: A random cf must have arbitrary large partial
quotients, i.e. the numbers occuring in a typical cf are
unbounded.

Theorem: An irrational α is badly approximable if and
only if its continued fraction expansion is bounded.
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Diophantine Approximation

Diophantine Approximation classifies real numbers by
how well they may be approximated by rational
numbers.
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Diophantine Approximation

Diophantine Approximation classifies real numbers by
how well they may be approximated by rational
numbers.

Fundamental Theorem of Dirichlet: For any irrational α
there exist infinitely many p/q (rel. prime) such that

|α− p/q| ≤ 1/q2.
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Diophantine Approximation

Diophantine Approximation classifies real numbers by
how well they may be approximated by rational
numbers.

Fundamental Theorem of Dirichlet: For any irrational α
there exist infinitely many p/q (rel. prime) such that

|α− p/q| ≤ 1/q2.

A sequence of infinitely many such fractions is given by
the partial convergents of the continued fraction
expansion of α.
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Diophantine Approximation

In general, one cannot improve the factor 2 in Dirichlet’s
theorem.
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Diophantine Approximation

In general, one cannot improve the factor 2 in Dirichlet’s
theorem.

A number β is badly approximable if there exists a K
such that

∀p/q ∈ Q |β − p/q| ≥ K/q2.
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Diophantine Approximation

In general, one cannot improve the factor 2 in Dirichlet’s
theorem.

A number β is badly approximable if there exists a K
such that

∀p/q ∈ Q |β − p/q| ≥ K/q2.

Examples:
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Diophantine Approximation

Algebraic numbers are close to badly approximable:
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Diophantine Approximation

Algebraic numbers are close to badly approximable:

Roth’s Theorem: For any algebraic α, for any ε > 0,

|α− p
q
| ≤ 1

q2+ε
(-1)

has only finitely many solutions.
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Properties of random continued fractions

The use of transfer operators allows to effectivize a lot
of results on continued fractions.
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Properties of random continued fractions

The use of transfer operators allows to effectivize a lot
of results on continued fractions.

Theorem: A random cf must have arbitrary large partial
quotients, i.e. the numbers occuring in a typical cf are
unbounded.
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Properties of random continued fractions

The use of transfer operators allows to effectivize a lot
of results on continued fractions.

Theorem: A random cf must have arbitrary large partial
quotients, i.e. the numbers occuring in a typical cf are
unbounded.

Theorem: An irrational α is badly approximable if and
only if its continued fraction expansion is bounded.
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Properties of random continued fractions

On the other hand, random reals cannot be too
well-approximable.
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Properties of random continued fractions

On the other hand, random reals cannot be too
well-approximable.

A Liouville number is an irrational α for which

(∀n) (∃p, q)
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

qn
.

Example:
∑

10−n!.
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Properties of random continued fractions

On the other hand, random reals cannot be too
well-approximable.

A Liouville number is an irrational α for which

(∀n) (∃p, q)
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

qn
.

Example:
∑

10−n!.

Theorem: [Staiger] No Liouville number is a random
real.
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Properties of random continued fractions

It turns out that random reals must be close to badly
approximable.
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Properties of random continued fractions

It turns out that random reals must be close to badly
approximable.

Theorem: Let ψ : N → R+ be such that limn ψ(n) = 0.
Let α ∈ R and suppose

∞

∃(p/q) |α− (p/q)| < ψ(q).

If
∑

kψ(k) <∞, then α cannot be random.

Random Functions – p.23



Properties of random continued fractions

It turns out that random reals must be close to badly
approximable.

Theorem: Let ψ : N → R+ be such that limn ψ(n) = 0.
Let α ∈ R and suppose

∞

∃(p/q) |α− (p/q)| < ψ(q).

If
∑

kψ(k) <∞, then α cannot be random.

This is an effective version of a theorem by Khintchine.
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