Random Functions

Jan Reimann

Institut für Informatik, Universität Heidelberg

Random reals and random sequences

- When we speak of random reals, we usually mean a random infinite binary sequence (which represents a real).

Random reals and random sequences

- When we speak of random reals, we usually mean a random infinite binary sequence (which represents a real).
- Justification: randomness is base invariant. The g-ary expansion of a real number is ML-random iff the h-ary is ($g, h \geq 2$).

Random reals and random sequences

- When we speak of random reals, we usually mean a random infinite binary sequence (which represents a real).
- Justification: randomness is base invariant. The g-ary expansion of a real number is ML-random iff the h-ary is ($g, h \geq 2$).
- This invariance constrasts normality, which is not base-independent. (Cassels, 1959).

Random reals and random sequences

- When we speak of random reals, we usually mean a random infinite binary sequence (which represents a real).
- Justification: randomness is base invariant. The g-ary expansion of a real number is ML-random iff the h-ary is ($g, h \geq 2$).
- This invariance constrasts normality, which is not base-independent. (Cassels, 1959).
- Base-invariance of randomness has been proved by a number of people: Calude and Jürgensen (1994), Staiger (1998), Hertling and Weihrauch (1998).

Conservation of randomness

- Base-invariance is already implicit in a fundamental result by Levin (1974): Conservation of randomness.

Conservation of randomness

- Base-invariance is already implicit in a fundamental result by Levin (1974): Conservation of randomness.
- Let μ be a measure on $2^{\omega}, \Phi: 2^{\omega} \rightarrow 2^{\omega}$ a transformation. This induces an image measure μ_{Φ} :

$$
\mu_{\Phi}[\sigma]=\mu \Phi^{-1}[\sigma]
$$

Conservation of randomness

- Base-invariance is already implicit in a fundamental result by Levin (1974): Conservation of randomness.
- Let μ be a measure on $2^{\omega}, \Phi: 2^{\omega} \rightarrow 2^{\omega}$ a transformation. This induces an image measure μ_{Φ} :

$$
\mu_{\Phi}[\sigma]=\mu \Phi^{-1}[\sigma]
$$

- Theorem: [Levin] If Φ is computable and ξ is μ-random, then $\Phi \xi$ is μ_{Φ}-random.

Continued fractions

- There is another important representation of reals: The continued fraction expansion.

Continued fractions

- There is another important representation of reals: The continued fraction expansion.
- For $\alpha \in \mathbb{R}$, let $[\alpha]$ denote the integral part, and $\{\alpha\}$ denote the non-integral part of α, so $\alpha=[\alpha]+\{\alpha\},[\alpha] \in \mathbb{Z}$, $\{\alpha\} \in[0,1)$.

Continued fractions

- There is another important representation of reals: The continued fraction expansion.
- For $\alpha \in \mathbb{R}$, let $[\alpha]$ denote the integral part, and $\{\alpha\}$ denote the non-integral part of α, so $\alpha=[\alpha]+\{\alpha\},[\alpha] \in \mathbb{Z}$, $\{\alpha\} \in[0,1)$.
- Given α, set $\alpha_{0}=\alpha$ and let, for $n \geq 0$,

$$
a_{n}=\left[\alpha_{n}\right] \quad \text { and } \quad \alpha_{n+1}=\frac{1}{\left\{\alpha_{n}\right\}} .
$$

(Stop if $\left\{\alpha_{n}\right\}=0$.)

Continued fractions

- There is another important representation of reals: The continued fraction expansion.
- For $\alpha \in \mathbb{R}$, let $[\alpha]$ denote the integral part, and $\{\alpha\}$ denote the non-integral part of α, so $\alpha=[\alpha]+\{\alpha\},[\alpha] \in \mathbb{Z}$, $\{\alpha\} \in[0,1)$.
- Given α, set $\alpha_{0}=\alpha$ and let, for $n \geq 0$,

$$
a_{n}=\left[\alpha_{n}\right] \quad \text { and } \quad \alpha_{n+1}=\frac{1}{\left\{\alpha_{n}\right\}} .
$$

(Stop if $\left\{\alpha_{n}\right\}=0$.)

- The process is finite iff α is rational.

The continued fraction expansion

- For irrational numbers, the partial convergents

$$
\left[a_{0}, a_{1}, \ldots a_{n}\right]:=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{2}}}} \quad a_{i} \in \mathbb{N}
$$

converge to α.

The continued fraction expansion

- For irrational numbers, the partial convergents

$$
\left[a_{0}, a_{1}, \ldots a_{n}\right]:=\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots \frac{1}{a_{n}}}}} \quad a_{i} \in \mathbb{N}
$$

converge to α.

- The continued fraction expansion induces a bijection between the irrational reals and the set of all infinite sequences of natural numbers, the Baire space $\mathbb{N}^{\mathbb{N}}$.

A few examples

- Continued fractions are extremely important in number theory. (We will see later why.)

A few examples

- Continued fractions are extremely important in number theory. (We will see later why.)
- Golden mean $(1+\sqrt{5}) / 2=[1,1,1,1, \ldots]$.

A few examples

- Continued fractions are extremely important in number theory. (We will see later why.)
- Golden mean $(1+\sqrt{5}) / 2=[1,1,1,1, \ldots]$.
- $\sqrt{2} / 2=[1,2,2,2, \ldots]$.

A few examples

- Continued fractions are extremely important in number theory. (We will see later why.)
- Golden mean $(1+\sqrt{5}) / 2=[1,1,1,1, \ldots]$.
- $\sqrt{2} / 2=[1,2,2,2, \ldots]$.
- $e \bmod 1=[1,2,1,1,4,1,1,6, \ldots]$.

A few examples

- Continued fractions are extremely important in number theory. (We will see later why.)
- Golden mean $(1+\sqrt{5}) / 2=[1,1,1,1, \ldots]$.
- $\sqrt{2} / 2=[1,2,2,2, \ldots]$.
- $e \bmod 1=[1,2,1,1,4,1,1,6, \ldots]$.
- $\pi \bmod 1=[7,15,1,292,1,1, \ldots]$.

Random continued fractions

- As the transformation is effective, we would expect invariance to hold for continued fractions (cf), too.

Random continued fractions

- As the transformation is effective, we would expect invariance to hold for continued fractions (cf), too.
- But: what is a random continued fraction?

Random continued fractions

- As the transformation is effective, we would expect invariance to hold for continued fractions (cf), too.
- But: what is a random continued fraction?
- One can think of two possibilities to define this:

Random continued fractions

- As the transformation is effective, we would expect invariance to hold for continued fractions (cf), too.
- But: what is a random continued fraction?
- One can think of two possibilities to define this:
- Say a cf is random if the sequence obtained by the binary expansion of the accordant real is random.

The 'randomness machinery'

- Measure theoretic [Martin-Löf]:

A sequence is random if it is not an effective nullset.

The 'randomness machinery'

- Measure theoretic [Martin-Löf]:

A sequence is random if it is not an effective nullset.

- Information theoretic [Kolmogorov; Levin; Chaitin] A sequence is random if it is incompressible.

The 'randomness machinery'

- Measure theoretic [Martin-Löf]:

A sequence is random if it is not an effective nullset.

- Information theoretic [Kolmogorov; Levin; Chaitin] A sequence is random if it is incompressible.
- Schnorr's Theorem: Both approaches yield the same concept.

The 'randomness machinery'

- Measure theoretic [Martin-Löf]:

A sequence is random if it is not an effective nullset.

- Information theoretic [Kolmogorov; Levin; Chaitin] A sequence is random if it is incompressible.
- Schnorr's Theorem: Both approaches yield the same concept.
- Key ingredient to the proof: Coding Theorem [Zvonkin-Levin].

Measure on Baire Space

- Basic open cylinders: convergents of continued fractions, $\left[a_{0}, \ldots a_{n}\right]$.

Measure on Baire Space

- Basic open cylinders: convergents of continued fractions, $\left[a_{0}, \ldots a_{n}\right]$.
- In the following, identify an initial segment $\left[a_{1}, \ldots, a_{n}\right]$ of a continued fraction with the n-convergent

Measure on Baire Space

- Basic open cylinders: convergents of continued fractions, $\left[a_{0}, \ldots a_{n}\right]$.
- In the following, identify an initial segment $\left[a_{1}, \ldots, a_{n}\right]$ of a continued fraction with the n-convergent

- The diameter of a cylinder (as a subset of $[0,1]$) is:

$$
\operatorname{diam}\left[a_{0}, \ldots a_{n}\right]=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}
$$

Effective measure

- A set $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$ is effectively null, if there is a recursive sequence $\left(C_{n}\right)$ of r.e. sets such that for each n,

$$
\mathcal{A} \subseteq \bigcup_{w \in C_{n}}[w] \quad \text { and } \quad \sum_{w \in C_{n}} \operatorname{diam}[w] \leq 2^{-n}
$$

Effective measure

- A set $\mathcal{A} \subseteq \mathbb{N}^{\mathbb{N}}$ is effectively null, if there is a recursive sequence $\left(C_{n}\right)$ of r.e. sets such that for each n,

$$
\mathcal{A} \subseteq \bigcup_{w \in C_{n}}[w] \quad \text { and } \quad \sum_{w \in C_{n}} \operatorname{diam}[w] \leq 2^{-n}
$$

- A cf α is random if $\{\alpha\} \subseteq \mathbb{N}^{\mathbb{N}}$ is not effectively null.

Random Continued Fractions

- Initial question: Is randomness invariant with respect to different representations (g-adic, continued fraction) of a real?

Random Continued Fractions

- Initial question: Is randomness invariant with respect to different representations (g-adic, continued fraction) of a real?
- Problem: The continued fraction expansion might code things more efficiently.

Comparing expansions

- Let θ be irrational. Suppose $\mathrm{E}_{2}(\theta) \upharpoonright_{n}=\theta_{1} \theta_{2} \ldots \theta_{n}$ are the first n digits of its binary expansion. Set

$$
r_{n}=r_{n}(\theta)=\sum_{i=1}^{n} \theta_{i} 2^{-i} \quad \text { and } \quad s_{n}=s_{n}(\theta)=\sum_{i=1}^{n} \theta_{i} 2^{-i}+\frac{1}{2^{n}} .
$$

Comparing expansions

- Let θ be irrational. Suppose $\mathrm{E}_{2}(\theta) \upharpoonright_{n}=\theta_{1} \theta_{2} \ldots \theta_{n}$ are the first n digits of its binary expansion. Set

$$
r_{n}=r_{n}(\theta)=\sum_{i=1}^{n} \theta_{i} 2^{-i} \quad \text { and } \quad s_{n}=s_{n}(\theta)=\sum_{i=1}^{n} \theta_{i} 2^{-i}+\frac{1}{2^{n}} .
$$

- r_{n} and s_{n} are rational, hence their continued fraction expansions finite. Assume

$$
\mathrm{CF}\left(r_{n}\right)=\left[a_{1}, a_{2}, \ldots, a_{k}\right] \text { and } \mathrm{CF}\left(s_{n}\right)=\left[b_{1}, b_{2}, \ldots, b_{l}\right] .
$$

Comparing expansions

- Let θ be irrational. Suppose $\mathrm{E}_{2}(\theta) \upharpoonright_{n}=\theta_{1} \theta_{2} \ldots \theta_{n}$ are the first n digits of its binary expansion. Set

$$
r_{n}=r_{n}(\theta)=\sum_{i=1}^{n} \theta_{i} 2^{-i} \quad \text { and } \quad s_{n}=s_{n}(\theta)=\sum_{i=1}^{n} \theta_{i} 2^{-i}+\frac{1}{2^{n}} .
$$

- r_{n} and s_{n} are rational, hence their continued fraction expansions finite. Assume

$$
\mathrm{CF}\left(r_{n}\right)=\left[a_{1}, a_{2}, \ldots, a_{k}\right] \text { and } \mathrm{CF}\left(s_{n}\right)=\left[b_{1}, b_{2}, \ldots, b_{l}\right] .
$$

- Let $N=\max \left\{j: a_{j}=b_{j}\right\}$ and set $\pi_{n}(\theta)=\left[a_{1}, \ldots, a_{N}\right]$.

Comparing expansions

- We cannot simply convert $\mathrm{E}_{2}(\theta) \upharpoonright_{n}$ into a continued fraction.

Comparing expansions

- We cannot simply convert $E_{2}(\theta) \upharpoonright_{n}$ into a continued fraction.
- Let $\theta=\sqrt[3]{2}-1=0.259921 \ldots$ (decimal expansion). We have

$$
r_{5}=0.25992 \quad \text { and } \quad s_{5}=0.25993 .
$$

Comparing expansions

- We cannot simply convert $\mathrm{E}_{2}(\theta) \upharpoonright_{n}$ into a continued fraction.
- Let $\theta=\sqrt[3]{2}-1=0.259921 \ldots$ (decimal expansion). We have

$$
r_{5}=0.25992 \text { and } s_{5}=0.25993 .
$$

- The continued fraction algorithm yields

$$
\begin{aligned}
\mathrm{CF}\left(r_{5}\right) & =[3,1,5,1,1,4,2,5,1,3] \\
\mathrm{CF}\left(s_{5}\right) & =[3,1,5,1,1,5,5,1,2,1,4,3] .
\end{aligned}
$$

Therefore $\pi_{5}(\theta)=[3,1,5,1,1]$.

Comparing expansions

- Question: How does $\left|\pi_{n}(\xi)\right|$ relate to n ?

Comparing expansions

- Question: How does $\left|\pi_{n}(\xi)\right|$ relate to n ?
- Theorem: [Lochs] For almost every $\xi \in 2^{\omega}$,

$$
\lim _{n \rightarrow \infty} \frac{\left|\pi_{n}(\xi)\right|}{n}=\frac{6 \log ^{2} 2}{\pi^{2}} .
$$

Comparing expansions

- Question: How does $\left|\pi_{n}(\xi)\right|$ relate to n ?
- Theorem: [Lochs] For almost every $\xi \in 2^{\omega}$,

$$
\lim _{n \rightarrow \infty} \frac{\left|\pi_{n}(\xi)\right|}{n}=\frac{6 \log ^{2} 2}{\pi^{2}} .
$$

- At the heart of Lochs' result lies a fundamental fact about the asymptotic behaviour of the partial convergents.

Comparing expansions

- Question: How does $\left|\pi_{n}(\xi)\right|$ relate to n ?
- Theorem: [Lochs] For almost every $\xi \in 2^{\omega}$,

$$
\lim _{n \rightarrow \infty} \frac{\left|\pi_{n}(\xi)\right|}{n}=\frac{6 \log ^{2} 2}{\pi^{2}} .
$$

- At the heart of Lochs' result lies a fundamental fact about the asymptotic behaviour of the partial convergents.
- Theorem: [Khintchine] For almost every $\alpha \in \mathbb{R}$,

$$
\frac{1}{n} \log q_{n}(\alpha) \longrightarrow \frac{\pi^{2}}{12 \log 2}
$$

Digression: Ergodic Theorem

- Let (X, μ) be some measure space (Borel), $T: X \rightarrow X$ μ-preserving, that is, $\mu A=\mu T^{-1} A$ for all A Borel. T is ergodic if $T A=A$ implies $\mu A \in\{0,1\}$.

Digression: Ergodic Theorem

- Let (X, μ) be some measure space (Borel), $T: X \rightarrow X$ μ-preserving, that is, $\mu A=\mu T^{-1} A$ for all A Borel. T is ergodic if $T A=A$ implies $\mu A \in\{0,1\}$.
- Theorem: [Birkhoff] For any continous $f: X \rightarrow \mathbb{R}$, ergodic T, and μ-almost every $x \in X$, it holds that

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(T^{i} x\right) \longrightarrow \int f d \mu
$$

Digression: Ergodic Theorem

- Let (X, μ) be some measure space (Borel), $T: X \rightarrow X$ μ-preserving, that is, $\mu A=\mu T^{-1} A$ for all A Borel. T is ergodic if $T A=A$ implies $\mu A \in\{0,1\}$.
- Theorem: [Birkhoff] For any continous $f: X \rightarrow \mathbb{R}$, ergodic T, and μ-almost every $x \in X$, it holds that

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(T^{i} x\right) \longrightarrow \int f d \mu
$$

- Gauss map $x \mapsto \frac{1}{x} \bmod 1$ describes the shift map for continued fractions. Its entropy is $\pi^{2} / 6 \log 2$.

Digression: Ergodic Theorem

- Let (X, μ) be some measure space (Borel), $T: X \rightarrow X$ μ-preserving, that is, $\mu A=\mu T^{-1} A$ for all A Borel. T is ergodic if $T A=A$ implies $\mu A \in\{0,1\}$.
- Theorem: [Birkhoff] For any continous $f: X \rightarrow \mathbb{R}$, ergodic T, and μ-almost every $x \in X$, it holds that

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(T^{i} x\right) \longrightarrow \int f d \mu
$$

- Gauss map $x \mapsto \frac{1}{x} \bmod 1$ describes the shift map for continued fractions. Its entropy is $\pi^{2} / 6 \log 2$.
- However, the ergodic theorem is not effective (Vyugin, 1998).

Proving Invariance

- Theorem: The set of irrational numbers θ that do not satisfy Lochs' theorem is an effective nullset.

Proving Invariance

- Theorem: The set of irrational numbers θ that do not satisfy Lochs' theorem is an effective nullset.
- Theorem: [Faivre] For all $\varepsilon>0$, there exist positive constants c, δ (depending on ε) with $0<\delta<1$ such that

$$
\lambda\left(\left\{\xi \in \mathbb{R}:\left|\frac{\left|\pi_{n} \theta\right|}{n}-L\right| \geq \varepsilon\right\}\right) \leq c \delta^{n}
$$

for all integers $n \geq 1$ and with $L=6 \log ^{2} 2 / \pi^{2}$.

Proving Invariance

- Theorem: The set of irrational numbers θ that do not satisfy Lochs' theorem is an effective nullset.
- Theorem: [Faivre] For all $\varepsilon>0$, there exist positive constants c, δ (depending on ε) with $0<\delta<1$ such that

$$
\lambda\left(\left\{\xi \in \mathbb{R}:\left|\frac{\left|\pi_{n} \theta\right|}{n}-L\right| \geq \varepsilon\right\}\right) \leq c \delta^{n}
$$

for all integers $n \geq 1$ and with $L=6 \log ^{2} 2 / \pi^{2}$.

- Result is based on transfer operators (Mayer, Ruelle).

Properties of random continued fractions

- The use of transfer operators allows to effectivize a lot of results on continued fractions.

Properties of random continued fractions

- The use of transfer operators allows to effectivize a lot of results on continued fractions.
- Theorem: A random cf must have arbitrary large partial quotients, i.e. the numbers occuring in a typical cf are unbounded.

Properties of random continued fractions

- The use of transfer operators allows to effectivize a lot of results on continued fractions.
- Theorem: A random cf must have arbitrary large partial quotients, i.e. the numbers occuring in a typical cf are unbounded.
- Theorem: An irrational α is badly approximable if and only if its continued fraction expansion is bounded.

Diophantine Approximation

- Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.

Diophantine Approximation

- Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.
- Fundamental Theorem of Dirichlet: For any irrational α there exist infinitely many p / q (rel. prime) such that

$$
|\alpha-p / q| \leq 1 / q^{2} .
$$

Diophantine Approximation

- Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.
- Fundamental Theorem of Dirichlet: For any irrational α there exist infinitely many p / q (rel. prime) such that

$$
|\alpha-p / q| \leq 1 / q^{2} .
$$

- A sequence of infinitely many such fractions is given by the partial convergents of the continued fraction expansion of α.

Diophantine Approximation

- In general, one cannot improve the factor 2 in Dirichlet's theorem.

Diophantine Approximation

- In general, one cannot improve the factor 2 in Dirichlet's theorem.
- A number β is badly approximable if there exists a K such that

$$
\forall p / q \in \mathbb{Q}|\beta-p / q| \geq K / q^{2} .
$$

Diophantine Approximation

- In general, one cannot improve the factor 2 in Dirichlet's theorem.
- A number β is badly approximable if there exists a K such that

$$
\forall p / q \in \mathbb{Q}|\beta-p / q| \geq K / q^{2} .
$$

- Examples:

Diophantine Approximation

- Algebraic numbers are close to badly approximable:

Diophantine Approximation

- Algebraic numbers are close to badly approximable:
- Roth's Theorem: For any algebraic α, for any $\varepsilon>0$,

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2+\varepsilon}} \tag{-1}
\end{equation*}
$$

has only finitely many solutions.

Properties of random continued fractions

- The use of transfer operators allows to effectivize a lot of results on continued fractions.

Properties of random continued fractions

- The use of transfer operators allows to effectivize a lot of results on continued fractions.
- Theorem: A random cf must have arbitrary large partial quotients, i.e. the numbers occuring in a typical cf are unbounded.

Properties of random continued fractions

- The use of transfer operators allows to effectivize a lot of results on continued fractions.
- Theorem: A random cf must have arbitrary large partial quotients, i.e. the numbers occuring in a typical cf are unbounded.
- Theorem: An irrational α is badly approximable if and only if its continued fraction expansion is bounded.

Properties of random continued fractions

- On the other hand, random reals cannot be too well-approximable.

Properties of random continued fractions

- On the other hand, random reals cannot be too well-approximable.
- A Liouville number is an irrational α for which

$$
(\forall n)(\exists p, q)\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{n}} .
$$

Example: $\sum 10^{-n!}$.

Properties of random continued fractions

- On the other hand, random reals cannot be too well-approximable.
- A Liouville number is an irrational α for which

$$
(\forall n)(\exists p, q)\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{n}} .
$$

Example: $\sum 10^{-n!}$.

- Theorem: [Staiger] No Liouville number is a random real.

Properties of random continued fractions

- It turns out that random reals must be close to badly approximable.

Properties of random continued fractions

- It turns out that random reals must be close to badly approximable.
- Theorem: Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be such that $\lim _{n} \psi(n)=0$. Let $\alpha \in \mathbb{R}$ and suppose

$$
\stackrel{\infty}{\exists}(p / q)|\alpha-(p / q)|<\psi(q) .
$$

If $\sum k \psi(k)<\infty$, then α cannot be random.

Properties of random continued fractions

- It turns out that random reals must be close to badly approximable.
- Theorem: Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be such that $\lim _{n} \psi(n)=0$. Let $\alpha \in \mathbb{R}$ and suppose

$$
\stackrel{\infty}{\exists}(p / q)|\alpha-(p / q)|<\psi(q) .
$$

If $\sum k \psi(k)<\infty$, then α cannot be random.

- This is an effective version of a theorem by Khintchine.

