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Schnorr’s Criticism

Martin-Löf randomness is a widely accepted formulation of
randomness for individual sequences.

ML-randomness coincides with incompressibility in terms of
(prefix-free) Kolmogorov complexity.

Schnorr’s criticism: ML-randomness is algorithmically too
strict. Notions of randomness should be based on computable
objects, e.g. computable betting games.

This talk: Is it possible to do this and still obtain a randomness
concept as powerful as ML-randomness/incompressibility?

Key ingredient: non-monotonicity.



Betting Games

Given: unknown infinite binary sequence A

A round in the game

Start with a capital of 1.

Select a position k ∈ N and specify a stake v ∈ [0, 1].

Predict the bit A(k).

If the prediction is correct, the capital is multiplied by 1 + v .
Otherwise the stake is lost.

Continue: pick a new position not selected before.

A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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Betting Strategies

Definition

A betting strategy is a partial function that, given the
outcomes of the previous rounds, determines

the position on which to bet next,
the stake to bet,
the value predicted.

Formally, a betting strategy is a partial mapping

b : (N× {0, 1})∗ → N× [0, 1]× {0, 1}.

A betting strategy is monotone if the positions to bet on are
chosen in an increasing order.

A betting strategy b succeeds on sequence S if the capital
grows unbounded when playing against S according to b.



Randomness as Unpredictability

Definition

A sequence is Kolmogorov-Loveland random (KL-random) if
no (partial) computable betting strategy succeeds on it.

A sequence is computably random if no computable
monotone betting strategy succeeds on it.



Randomness as Typicalness

Definition

A Martin-Löf test (ML-test) is a uniformly computable
sequence (Vn)n∈N of c.e. sets of strings such that for all n,∑

σ∈Vn

2−|σ| 6 2−n.

An ML-test (Vn) covers a sequence A if (∀n)(∃σ ∈ Vn) σ @ A.

A sequence is Martin-Löf random (ML-random) if it is not
covered by an ML-test.

A Schnorr test is an ML-test (Vn) such that the real number∑
σ∈Vn

2−|σ| is uniformly computable. A sequence is Schnorr
random if it not covered by a Schnorr test.



Relations between Randomness Notions

Open Question (Muchnik, Semenov, and Uspensky, 1998)

Is KL-randomness equivalent to ML-randomness?

ML-random

⇓
KL-random

⇓
computably random

⇓
Schnorr random
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Resource-Bounded Betting Games

Buhrman, van Melkebeek, Regan, Sivakumar, and Strauss (2000)
studied resource-bounded betting strategies.

Some Results

If pseudorandom generators computable in exponential time
(E, EXP) with exponential security exist, then every betting
strategy computable in exponential time can be simulated by
an exponential time monotone betting strategy.

If exponential time betting strategies have the finite union
property, then BPP 6= EXP.
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Example: Computably Enumerable Sets

Example

No partial computable non-monotonic betting strategy can
succeed on all computably enumerable sets.

Given a computable betting strategy b, define a c.e. set W such
that b does not succeed on W by enumerating elements into W
according to the places selected by b.
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Example: Computably Enumerable Sets

Fact

There exist computable non-monotonic betting strategies b0 and
b1 such that for every c.e. set W, at least one of b0 and b1 will
succeed on W.

b0 succeeds on all rather sparse sets, whereas b1 succeeds if a lot
of elements are enumerated into the set W .

Failure of finite union property

Computable betting strategies do not have the finite union property.
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Kolmogorov Complexity

Definition

Let U be a universal Turing machine. For a string σ define the
Kolmogorov complexity C of a string as

C(σ) = CU(σ) = min{|p| : p ∈ {0, 1}∗, U(p) = σ},

i.e. C(σ) is the length of the shortest U-program for σ.

Fact (Kolmogorov; Solomonoff)

C is independent of the choice of U, up to an additive constant.

Variant

Prefix-free complexity K. Based on prefix-free Turing-machines –
no two converging inputs are prefixes of one another.



The Complexity of Martin-Löf Random Sequences

Theorem (Schnorr)

Given a sequence A, if there exists a function

h : N → N

such that for all n,

K(A�h(n)) 6 h(n) − n,

then A is not ML-random.
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The Complexity of KL-Random Sequences

Theorem (Muchnik)

Given a sequence A, if there exists a computable function

h : N → N

such that for all n,

K(A�h(n)) 6 h(n) − n,

then A is not KL-random.



The Complexity of KL-Random Sequences

Note that this is fails for computably random sequences. In fact,
there can be computably random sequences of very low
complexity. [Muchnik; Merkle]



Extracting Subsequences

Let Z be an infinite, co-infinite subset of N.

Definition

Given a sequence A, the Z -subsequence of A, A�Z , is defined as

A�Z (n) = 1 ⇔ A(pZ (n)) = 1,

where pz(n) is the n + 1st element of Z .
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A0 ⊕Z A1,

is defined as the unique sequence A such that

A�Z = A1 and A�Z = A0.
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Splitting Properties

If we split a KL-random sequence effectively, both subsequences
obtained must be KL-random relative to each other.

Observation

Let Z be a computable, infinite and co-infinite set of natural
numbers, and let A = A0 ⊕Z A1. A is KL-random if and only if

A0 is KLA1 -random and A1 is KLA0 -random.
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numbers, and let A = A0 ⊕Z A1. A is KL-random if and only if

A0 is KLA1 -random and A1 is KLA0 -random.

Proof of “⇒”:

Suppose b1 computable in A1 succeeds on A0.
Devise betting strategy successful on A:

Scan the Z -positions of the sequence (corresponding to the
places where A1 is coded).
Find a new initial segment which allows to compute a new
value of b1.
Bet on the Z -positions of the sequence according to b1.
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Splitting Properties

We can use this observation to show that one “half” of a
KL-random sequence must always be ML-random.

Theorem
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numbers. If the sequence A = A0 ⊕Z A1 is KL-random, then at
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Splitting Properties

Theorem

Let Z be a computable, infinite and co-infinite set of natural
numbers. If the sequence A = A0 ⊕Z A1 is KL-random, then at
least one of A0, A1 is Martin-Löf random.

Suppose neither A0 nor A1 is ML-random.

Then there are Martin-Löf tests (U0
n : n ∈ N) and (U1

n : n ∈ N)

with U i
n = {ui

n,0, ui
n,1, . . . }, such that (U i

n) covers Ai .

Define functions f0, f1 by fi(n) = min{k ∈ N : ui
n,k @ Ai }.

For some i , (
∞
∃m) fi(m) > f1−i(m).



Splitting Properties

Theorem

Let Z be a computable, infinite and co-infinite set of natural
numbers. If the sequence A = A0 ⊕Z A1 is KL-random, then at
least one of A0, A1 is Martin-Löf random.

Define a new test (Vn) by

Vn =
⋃

m>n

{u1−i
0 , . . . , u1−i

fi(m)}.

(Vn) is a Schnorr test relative to the oracle Ai and covers
A1−i , so A1−i is not SchnorrAi -random.

KL-randomness implies Schnorr-randomness, so A1−i is not
KLAi -random, and hence A is not KL-random.



Splitting Properties

This result can be improved.

Z has density δ if limm→∞ |{Z ∩ {0, . . . , m − 1}|/m = δ.

Theorem

Let A be a KL-random sequence and let δ < 1 be rational.
Then there is a computable set Z of density at least δ such
that A�Z is ML-random.

Proof uses a result by Van Lambalgen (1987), who showed that
A = A0 ⊕Z A1 is ML-random if and only if A0 is ML-random and A1

is MLA0-random.
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A Counterexample

The splitting property of KL-random sequences is not a sufficient
criterion for ML-randomness.

Theorem

There is a sequence A which is not computably random such that
for each computable, infinite and co-infinite set Z , A�Z is
ML-random.
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Kolmogorov-Loveland Stochasticity

One can modify betting strategies to obtain the concept of
selection rules.

Selection rules

Select a position k ∈ N.

Specify whether to include the bit A(k) in the selected
subsequence.

After the bit is revealed pick a new position not selected
before.
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Kolmogorov-Loveland Stochasticity

Definition

A sequence A is Kolmogorov-Loveland stochastic if every infinite
subsequence of A selected by a computable selection rule has
limit frequency 1/2.

Every ML-random sequence is KL-stochastic.

Shen (1988) showed that there are KL-stochastic sequences not
ML-random.
He used Bernoulli distributions (βn, 1 − βn), with∑

n

(1/2 − βn)
2 = ∞
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Effective Dimension

There exists an interesting connection between the asymptotic
complexity of sequences and Hausdorff dimension.

Hausdorff dimension is defined via Hausdorff measures.
Similar to Lebesgue measure, one can define effective
versions [Lutz 2000].

Effective dimension, dim1
H, can be characterized in terms of

Kolmogorov complexity.

Theorem (Ryabko; Mayordomo)

The effective dimension of a sequence A is given by

dim1
H A = lim inf

n→∞ K(A�n)

n
.
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It turns out that even the KL-stochastic sequences are already very
close to incompressible.

Theorem

If R is KL-stochastic, then dim1
H R = 1.

This implies, in particular, that all KL-random sequences have
dimension 1, too.
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The Dimension of KL-Stochastic Sequences

Theorem

If R is KL-stochastic, then dim1
H R = 1.

The main ingredient of the proof:

A = A0 ⊕Z A1 KL-stochastic ⇒ dim1
H A0 = 1 or dim1

H A1 = 1.

Then relativize to obtain arbitrary dense subsequences of
dimension 1.

Finally, use

dim1
H A0 ⊕Z A1 > δZ dim1

H A1 + (1 − δZ ) dim1,A1
H A0,

where δZ denotes the density of Z . (Proof uses symmetry of
algorithmic information.)
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Lemma

For every computable, infinite, co-infinite set Z ,

A = A0 ⊕Z A1 KL-stocjastic ⇒ dim1
H A0 = 1 or dim1

H A1 = 1.

Suppose dim1
H A0, A1 < α < 1.

Find a selection rule that selects from A an unbalanced
subsequence.

The set of α-compressible strings (K(w) 6 α|w |) can be
effectively enumerated {w0, w1, . . . }.

If a sequence has infinitely many α-compressible initial
segments, it must also have infinitely many α-compressible
substrings.
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Lemma

For every computable, infinite, co-infinite set Z ,

A = A0 ⊕Z A1 KL-stocjastic ⇒ dim1
H A0 = 1 or dim1

H A1 = 1.

Idea: Use the compressible substrings to select an
unbalanced subsequence.

Known techniques: From a finite set of compressible strings
we can compute a selection rule which does this. (Conversion
of martingales into selection rules)

The function

gr (m) = µi [wi substring of Ar at position m and |wi | > cm]

is total (for any constant c).



The Dimension of KL-Stochastic Sequences

Lemma

For every computable, infinite, co-infinite set Z ,

A = A0 ⊕Z A1 KL-stocjastic ⇒ dim1
H A0 = 1 or dim1

H A1 = 1.

Let

mt+1 = mt + max{|wi | : i 6 max{g0(mt), g1(mt)}}.

The mt will be the “selection blocks”.

Now w.l.o.g. assume that

∃∞t (g0(mt) 6 g1(mt)).

We will use A1 for scanning, A0 for selecting.



The Dimension of KL-Stochastic Sequences

Lemma

For every computable, infinite, co-infinite set Z ,

A = A0 ⊕Z A1 KL-stocjastic ⇒ dim1
H A0 = 1 or dim1

H A1 = 1.

By scanning only bits of A1, we can, for every t , compute
g1(mt). From the strings {w0, . . . wg1(mt)} compute a selection
rule as described above.

Infinitely often some w ∈ {w0, . . . wg1(mt)} is a substring of A0

at mt , so the selection rule selects a long, unbalanced
substring from w = A0(mt) . . . A0(mt + |w | − 1).



Conclusion

Non-monotonicity makes (computable) betting strategies
much more powerful.

In many ways, KL-randomness behaves like Martin-Löf
randomness.

However, none of the properties studied is a sufficient
condition for ML-randomness; on the contrary, there are
examples “far from ML-randomness”.

A proof that KL-randomness is equivalent to ML-randomness
would would give a striking argument against Schnorr’s
criticism of Martin-Löf randomness.
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