Kolmogorov-Loveland Randomness and Stochasticity

Wolfgang Merkle¹ Joseph Miller² André Nies³ Jan Reimann¹ Frank Stephan⁴

¹ Institut für Informatik, Universität Heidelberg
 ²Department of Mathematics, Indiana University
 ³Department of Computer Science, University of Auckland
 ⁴Department of Mathematics, National University of Singapore

March 19, 2005

うして 山田 マイボット ボット ショックタイ

2 Betting Games

2 Betting Games

3 Previous Work

Resource-Bounded Betting Games

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ □ ● のへで

Muchnik's Theorem

2 Betting Games

3 Previous Work

Resource-Bounded Betting Games

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Muchnik's Theorem
- 4 The Power of Two
 - Splitting Properties
 - Counterexample

2 Betting Games

3 Previous Work

- Resource-Bounded Betting Games
- Muchnik's Theorem
- 4 The Power of Two
 - Splitting Properties
 - Counterexample
- 5 Kolmogorov-Loveland Stochasticity

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Martin-Löf randomness is a widely accepted formulation of randomness for individual sequences.
- ML-randomness coincides with incompressibility in terms of (prefix-free) Kolmogorov complexity.
- Schnorr's criticism: ML-randomness is algorithmically too strict. Notions of randomness should be based on computable objects, e.g. computable betting games.
- This talk: Is it possible to do this and still obtain a randomness concept as powerful as ML-randomness/incompressibility?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Key ingredient: non-monotonicity.

Given: unknown infinite binary sequence A

A round in the game

- Start with a capital of 1.
- Select a position $k \in \mathbb{N}$ and specify a stake $v \in [0, 1]$.
- **Predict** the bit A(k).
- If the prediction is correct, the capital is multiplied by 1 + v. Otherwise the stake is lost.
- Continue: pick a new position not selected before.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 2 の Q ()

Given: unknown infinite binary sequence A

A round in the game

- Start with a capital of 1.
- Select a position $k \in \mathbb{N}$ and specify a stake $v \in [0, 1]$.
- **Predict** the bit A(k).
- If the prediction is correct, the capital is multiplied by 1 + v. Otherwise the stake is lost.
- Continue: pick a new position not selected before.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 2 の Q ()

Given: unknown infinite binary sequence A

A round in the game

- Start with a capital of 1.
- Select a position $k \in \mathbb{N}$ and specify a stake $v \in [0, 1]$.
- **Predict** the bit A(k).
- If the prediction is correct, the capital is multiplied by 1 + v. Otherwise the stake is lost.
- Continue: pick a new position not selected before.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Capital: 1

Stake: 0.5

Given: unknown infinite binary sequence A

A round in the game

- Start with a capital of 1.
- Select a position $k \in \mathbb{N}$ and specify a stake $v \in [0, 1]$.
- **Predict** the bit A(k).
- If the prediction is correct, the capital is multiplied by 1 + v. Otherwise the stake is lost.
- Continue: pick a new position not selected before.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Given: unknown infinite binary sequence A

A round in the game

- Start with a capital of 1.
- Select a position $k \in \mathbb{N}$ and specify a stake $v \in [0, 1]$.
- **Predict** the bit A(k).
- If the prediction is correct, the capital is multiplied by 1 + v. Otherwise the stake is lost.
- Continue: pick a new position not selected before.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

Given: unknown infinite binary sequence A

A round in the game

- Start with a capital of 1.
- Select a position $k \in \mathbb{N}$ and specify a stake $v \in [0, 1]$.
- **Predict** the bit A(k).
- If the prediction is correct, the capital is multiplied by 1 + v. Otherwise the stake is lost.
- Continue: pick a new position not selected before.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

Betting Strategies

Definition

- A betting strategy is a partial function that, given the outcomes of the previous rounds, determines
 - the position on which to bet next,
 - the stake to bet,
 - the value predicted.
- Formally, a betting strategy is a partial mapping

 $b: (\mathbb{N} \times \{0, 1\})^* \to \mathbb{N} \times [0, 1] \times \{0, 1\}.$

- A betting strategy is monotone if the positions to bet on are chosen in an increasing order.
- A betting strategy b succeeds on sequence S if the capital grows unbounded when playing against S according to b.

Definition

A sequence is Kolmogorov-Loveland random (KL-random) if no (partial) computable betting strategy succeeds on it.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

A sequence is computably random if no computable monotone betting strategy succeeds on it.

Randomness as Typicalness

Definition

A Martin-Löf test (ML-test) is a uniformly computable sequence (V_n)_{n∈ℕ} of c.e. sets of strings such that for all n,

$$\sum_{\sigma\in V_n} 2^{-|\sigma|} \leqslant 2^{-n}.$$

- An ML-test (V_n) covers a sequence A if $(\forall n)(\exists \sigma \in V_n) \sigma \sqsubset A$.
- A sequence is Martin-Löf random (ML-random) if it is not covered by an ML-test.
- A Schnorr test is an ML-test (V_n) such that the real number $\sum_{\sigma \in V_n} 2^{-|\sigma|}$ is uniformly computable. A sequence is Schnorr random if it not covered by a Schnorr test.

```
ML-random
↓
KL-random
↓
computably random
↓
Schnorr random
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Relations between Randomness Notions

Open Question (Muchnik, Semenov, and Uspensky, 1998)

Is KL-randomness equivalent to ML-randomness?

ML-random **()?** KL-random ↓↑ computably random ↓↑ Schnorr random

Buhrman, van Melkebeek, Regan, Sivakumar, and Strauss (2000) studied resource-bounded betting strategies.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Buhrman, van Melkebeek, Regan, Sivakumar, and Strauss (2000) studied resource-bounded betting strategies.

Some Results

- If pseudorandom generators computable in exponential time (E, EXP) with exponential security exist, then every betting strategy computable in exponential time can be simulated by an exponential time monotone betting strategy.
- If exponential time betting strategies have the finite union property, then BPP ≠ EXP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

Example: Computably Enumerable Sets

Example

No partial computable non-monotonic betting strategy can succeed on all computably enumerable sets.

Example

No partial computable non-monotonic betting strategy can succeed on all computably enumerable sets.

Given a computable betting strategy b, define a c.e. set W such that b does not succeed on W by enumerating elements into W according to the places selected by b.

Fact

There exist computable non-monotonic betting strategies b_0 and b_1 such that for every c.e. set W, at least one of b_0 and b_1 will succeed on W.

 b_0 succeeds on all rather sparse sets, whereas b_1 succeeds if a lot of elements are enumerated into the set W.

Fact

There exist computable non-monotonic betting strategies b_0 and b_1 such that for every c.e. set W, at least one of b_0 and b_1 will succeed on W.

 b_0 succeeds on all rather sparse sets, whereas b_1 succeeds if a lot of elements are enumerated into the set W.

Failure of finite union property

Computable betting strategies do not have the finite union property.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Kolmogorov Complexity

Definition

Let *U* be a universal Turing machine. For a string σ define the Kolmogorov complexity C of a string as

 $C(\sigma) = C_U(\sigma) = \min\{|p|: p \in \{0, 1\}^*, U(p) = \sigma\},\$

i.e. $C(\sigma)$ is the length of the shortest *U*-program for σ .

Fact (Kolmogorov; Solomonoff)

C is independent of the choice of U, up to an additive constant.

Variant

Prefix-free complexity K. Based on prefix-free Turing-machines – no two converging inputs are prefixes of one another.

The Complexity of Martin-Löf Random Sequences

Theorem (Schnorr)

Given a sequence A, if there exists a function

 $h:\mathbb{N}\to\mathbb{N}$

such that for all n,

 $\mathsf{K}(A\!\upharpoonright_{h(n)})\leqslant h(n)-n,$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

then A is not ML-random.

The Complexity of Martin-Löf Random Sequences

Theorem (Schnorr)

Given a sequence A, if there exists a function

 $h:\mathbb{N}\to\mathbb{N}$

such that for all n,

 $\mathsf{K}(A\!\upharpoonright_{h(n)})\leqslant h(n)-n,$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

then A is not ML-random.

Theorem (Muchnik)

Given a sequence A, if there exists a computable function

 $h:\mathbb{N}\to\mathbb{N}$

such that for all n,

 $\mathsf{K}(A\!\upharpoonright_{h(n)})\leqslant h(n)-n,$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

then A is not KL-random.

Note that this is fails for computably random sequences. In fact, there can be computably random sequences of very low complexity. [Muchnik; Merkle]

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Extracting Subsequences

Let Z be an infinite, co-infinite subset of \mathbb{N} .

Definition

Given a sequence A, the Z-subsequence of A, $A \upharpoonright_Z$, is defined as

$$A \upharpoonright_Z (n) = 1 \iff A(p_Z(n)) = 1,$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

where $p_z(n)$ is the n + 1st element of Z.

Definition Given a sequence *A*, the *Z*-subsequence of *A*, $A \upharpoonright_Z$, is defined as $A \upharpoonright_Z (n) = 1 \iff A(p_Z(n)) = 1$, where $p_Z(n)$ is the n + 1st element of *Z*.

A 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 A

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ζ

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 2 の Q ()

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Generalized Joins

Definition

The *Z*-join of two sequences A_0 , A_1 ,

 $A_0\oplus_Z A_1$,

is defined as the unique sequence A such that

$$A \upharpoonright_{Z} = A_1$$
 and $A \upharpoonright_{\overline{Z}} = A_0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ □ ● のへで

Generalized Joins

Definition

The *Z*-join of two sequences A_0 , A_1 ,

 $A_0\oplus_Z A_1$,

is defined as the unique sequence A such that

$$A \upharpoonright_{Z} = A_1$$
 and $A \upharpoonright_{\overline{Z}} = A_0$.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 2 の Q ()
Definition

The *Z*-join of two sequences A_0 , A_1 ,

 $A_0\oplus_Z A_1$,

is defined as the unique sequence A such that

$$A \upharpoonright_{Z} = A_1$$
 and $A \upharpoonright_{\overline{Z}} = A_0$.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 2 の 0 0

Definition

The *Z*-join of two sequences A_0 , A_1 ,

 $A_0\oplus_Z A_1$,

is defined as the unique sequence A such that

$$A \upharpoonright_{Z} = A_1$$
 and $A \upharpoonright_{\overline{Z}} = A_0$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition

The *Z*-join of two sequences A_0 , A_1 ,

 $A_0\oplus_Z A_1$,

is defined as the unique sequence A such that

$$A \upharpoonright_{Z} = A_1$$
 and $A \upharpoonright_{\overline{Z}} = A_0$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition

The *Z*-join of two sequences A_0 , A_1 ,

 $A_0 \oplus_Z A_1$,

is defined as the unique sequence A such that

$$A \upharpoonright_{Z} = A_1$$
 and $A \upharpoonright_{\overline{Z}} = A_0$.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 2 の 0 0

7

If we split a KL-random sequence effectively, both subsequences obtained must be KL-random relative to each other.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

If we split a KL-random sequence effectively, both subsequences obtained must be KL-random relative to each other.

Observation

Let *Z* be a computable, infinite and co-infinite set of natural numbers, and let $A = A_0 \oplus_Z A_1$. *A* is KL-random if and only if

 A_0 is KL^{A_1} -random and A_1 is KL^{A_0} -random.

Observation

Let *Z* be a computable, infinite and co-infinite set of natural numbers, and let $A = A_0 \oplus_Z A_1$. *A* is KL-random if and only if

 A_0 is KL^{A_1} -random and A_1 is KL^{A_0} -random.

Splitting Properties

Observation

Let *Z* be a computable, infinite and co-infinite set of natural numbers, and let $A = A_0 \oplus_Z A_1$. *A* is KL-random if and only if

 A_0 is KL^{A_1} -random and A_1 is KL^{A_0} -random.

Observation

Let *Z* be a computable, infinite and co-infinite set of natural numbers, and let $A = A_0 \oplus_Z A_1$. *A* is KL-random if and only if

 A_0 is KL^{A_1} -random and A_1 is KL^{A_0} -random.

Proof of " \Rightarrow ":

- Suppose b_1 computable in A_1 succeeds on A_0 .
- Devise betting strategy successful on A:
 - Scan the Z-positions of the sequence (corresponding to the places where A₁ is coded).
 - Find a new initial segment which allows to compute a new value of *b*₁.
 - Bet on the \overline{Z} -positions of the sequence according to b_1 .

We can use this observation to show that one "half" of a KL-random sequence must always be ML-random.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We can use this observation to show that one "half" of a KL-random sequence must always be ML-random.

Theorem

Let *Z* be a computable, infinite and co-infinite set of natural numbers. If the sequence $A = A_0 \oplus_Z A_1$ is KL-random, then at least one of A_0 , A_1 is Martin-Löf random.

<ロト 4 回 ト 4 回 ト 4 回 ト 1 回 2 の 0 0

Let *Z* be a computable, infinite and co-infinite set of natural numbers. If the sequence $A = A_0 \oplus_Z A_1$ is KL-random, then at least one of A_0 , A_1 is Martin-Löf random.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Let *Z* be a computable, infinite and co-infinite set of natural numbers. If the sequence $A = A_0 \oplus_Z A_1$ is KL-random, then at least one of A_0 , A_1 is Martin-Löf random.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Let Z be a computable, infinite and co-infinite set of natural numbers. If the sequence $A = A_0 \oplus_Z A_1$ is KL-random, then at least one of A_0 , A_1 is Martin-Löf random.

- Suppose neither A_0 nor A_1 is ML-random.
- Then there are Martin-Löf tests $(U_n^0: n \in \mathbb{N})$ and $(U_n^1: n \in \mathbb{N})$ with $U_n^i = \{u_{n,0}^i, u_{n,1}^i, \dots\}$, such that (U_n^i) covers A_i .

うして 山田 マイボット ボット ショックタイ

■ Define functions f_0 , f_1 by $f_i(n) = \min\{k \in \mathbb{N} : u_{n,k}^i \sqsubset A_i\}$.

For some *i*,
$$(\exists m) f_i(m) \ge f_{1-i}(m)$$
.

0

Let *Z* be a computable, infinite and co-infinite set of natural numbers. If the sequence $A = A_0 \oplus_Z A_1$ is KL-random, then at least one of A_0 , A_1 is Martin-Löf random.

• Define a new test (V_n) by

$$V_n = \bigcup_{m>n} \{u_0^{1-i}, \ldots, u_{f_i(m)}^{1-i}\}.$$

- (V_n) is a Schnorr test relative to the oracle A_i and covers A_{1-i} , so A_{1-i} is not Schnorr^{A_i}-random.
- KL-randomness implies Schnorr-randomness, so *A*_{1−*i*} is not KL^{*A_i*}-random, and hence *A* is not KL-random.

Z has density δ if $\lim_{m\to\infty} |\{Z \cap \{0, \ldots, m-1\}|/m = \delta$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Z has density δ if $\lim_{m\to\infty} |\{Z \cap \{0, \ldots, m-1\}|/m = \delta$.

Theorem

Let A be a KL-random sequence and let $\delta < 1$ be rational. Then there is a computable set Z of density at least δ such that $A \upharpoonright_Z$ is ML-random.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Z has density
$$\delta$$
 if $\lim_{m\to\infty} |\{Z \cap \{0,\ldots,m-1\}|/m = \delta$.

Theorem

Let A be a KL-random sequence and let $\delta < 1$ be rational. Then there is a computable set Z of density at least δ such that $A \upharpoonright_Z$ is ML-random.

Proof uses a result by Van Lambalgen (1987), who showed that $A = A_0 \oplus_Z A_1$ is ML-random if and only if A_0 is ML-random and A_1 is ML^{A₀}-random.

Z has density
$$\delta$$
 if $\lim_{m\to\infty} |\{Z \cap \{0,\ldots,m-1\}|/m = \delta$.

Theorem

Let A be a KL-random sequence and let $\delta < 1$ be rational. Then there is a computable set Z of density at least δ such that $A \upharpoonright_Z$ is ML-random.

Proof uses a result by Van Lambalgen (1987), who showed that $A = A_0 \oplus_Z A_1$ is ML-random if and only if A_0 is ML-random and A_1 is ML^{A₀}-random.

The splitting property of KL-random sequences is not a sufficient criterion for ML-randomness.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The splitting property of KL-random sequences is not a sufficient criterion for ML-randomness.

Theorem

There is a sequence A which is not computably random such that for each computable, infinite and co-infinite set Z, $A|_Z$ is *ML*-random.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

One can modify betting strategies to obtain the concept of selection rules.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

One can modify betting strategies to obtain the concept of selection rules.

Selection rules

- Select a position $k \in \mathbb{N}$.
- Specify whether to include the bit A(k) in the selected subsequence.
- After the bit is revealed pick a new position not selected before.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

Kolmogorov-Loveland Stochasticity

Definition

A sequence A is Kolmogorov-Loveland stochastic if every infinite subsequence of A selected by a computable selection rule has limit frequency 1/2.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Kolmogorov-Loveland Stochasticity

Definition

A sequence *A* is Kolmogorov-Loveland stochastic if every infinite subsequence of *A* selected by a computable selection rule has limit frequency 1/2.

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト ● ● ● の Q ()

Every ML-random sequence is KL-stochastic.

Kolmogorov-Loveland Stochasticity

Definition

A sequence A is Kolmogorov-Loveland stochastic if every infinite subsequence of A selected by a computable selection rule has limit frequency 1/2.

Every ML-random sequence is KL-stochastic.

Shen (1988) showed that there are KL-stochastic sequences not ML-random.

He used Bernoulli distributions $(\beta_n, 1 - \beta_n)$, with

$$\sum_{n} (1/2 - \beta_n)^2 = \infty$$

Effective Dimension

- There exists an interesting connection between the asymptotic complexity of sequences and Hausdorff dimension.
- Hausdorff dimension is defined via Hausdorff measures. Similar to Lebesgue measure, one can define effective versions [Lutz 2000].
- Effective dimension, dim¹_H, can be characterized in terms of Kolmogorov complexity.

Effective Dimension

- There exists an interesting connection between the asymptotic complexity of sequences and Hausdorff dimension.
- Hausdorff dimension is defined via Hausdorff measures. Similar to Lebesgue measure, one can define effective versions [Lutz 2000].
- Effective dimension, dim¹_H, can be characterized in terms of Kolmogorov complexity.

Theorem (Ryabko; Mayordomo)

The effective dimension of a sequence A is given by

$$\dim_{\mathsf{H}}^{1} A = \liminf_{n \to \infty} \frac{\mathsf{K}(A \upharpoonright_{n})}{n}$$

Theorem (Ryabko; Mayordomo)

The effective dimension of a sequence A is given by

$$\dim_{\mathsf{H}}^{1} A = \liminf_{n \to \infty} \frac{\mathsf{K}(A \upharpoonright_{n})}{n}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ・ □ ● のへで

It turns out that even the KL-stochastic sequences are already very close to incompressible.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

It turns out that even the KL-stochastic sequences are already very close to incompressible.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem

If R is KL-stochastic, then $\dim_{H}^{1} R = 1$.

It turns out that even the KL-stochastic sequences are already very close to incompressible.

Theorem

If R is KL-stochastic, then $\dim_{H}^{1} R = 1$.

This implies, in particular, that all KL-random sequences have dimension 1, too.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The Dimension of KL-Stochastic Sequences

Theorem

If R is KL-stochastic, then $\dim_{H}^{1} R = 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The Dimension of KL-Stochastic Sequences

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem

If R is KL-stochastic, then $\dim_{H}^{1} R = 1$.

The Dimension of KL-Stochastic Sequences

Theorem

If R is KL-stochastic, then $\dim_{H}^{1} R = 1$.

■ The main ingredient of the proof:

 $A = A_0 \oplus_Z A_1$ KL-stochastic $\Rightarrow \dim_H^1 A_0 = 1$ or $\dim_H^1 A_1 = 1$.

Then relativize to obtain arbitrary dense subsequences of dimension 1.

Finally, use

$$\dim_{\mathrm{H}}^{1} A_{0} \oplus_{Z} A_{1} \geq \delta_{Z} \dim_{\mathrm{H}}^{1} A_{1} + (1 - \delta_{Z}) \dim_{\mathrm{H}}^{1, A_{1}} A_{0},$$

where δ_Z denotes the density of Z. (Proof uses symmetry of algorithmic information.)

 $A = A_0 \oplus_Z A_1$ KL-stochastic $\Rightarrow \dim_H^1 A_0 = 1$ or $\dim_H^1 A_1 = 1$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●
Lemma

For every computable, infinite, co-infinite set Z,

 $A = A_0 \oplus_Z A_1$ KL-stocjastic $\Rightarrow \dim_H^1 A_0 = 1$ or $\dim_H^1 A_1 = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

Lemma

For every computable, infinite, co-infinite set Z,

 $A = A_0 \oplus_Z A_1$ KL-stocjastic $\Rightarrow \dim_H^1 A_0 = 1$ or $\dim_H^1 A_1 = 1$.

- Suppose dim¹_H A_0 , $A_1 < \alpha < 1$.
- Find a selection rule that selects from A an unbalanced subsequence.
- The set of α -compressible strings (K(w) $\leq \alpha |w|$) can be effectively enumerated { w_0, w_1, \ldots }.
- If a sequence has infinitely many α-compressible initial segments, it must also have infinitely many α-compressible substrings.

Lemma

For every computable, infinite, co-infinite set Z,

 $A = A_0 \oplus_Z A_1$ KL-stocjastic $\Rightarrow \dim_H^1 A_0 = 1$ or $\dim_H^1 A_1 = 1$.

- Idea: Use the compressible substrings to select an unbalanced subsequence.
- Known techniques: From a finite set of compressible strings we can compute a selection rule which does this. (Conversion of martingales into selection rules)

The function

 $g_r(m) = \mu i [w_i \text{ substring of } A_r \text{ at position } m \text{ and } |w_i| \ge cm]$

is total (for any constant c).

Lemma

For every computable, infinite, co-infinite set Z,

 $A = A_0 \oplus_Z A_1$ KL-stocjastic $\Rightarrow \dim_H^1 A_0 = 1$ or $\dim_H^1 A_1 = 1$.

Let

 $m_{t+1} = m_t + \max\{|w_i|: i \leq \max\{g_0(m_t), g_1(m_t)\}\}.$

The m_t will be the "selection blocks".

Now w.l.o.g. assume that

```
\exists^{\infty} t \ (g_0(m_t) \leqslant g_1(m_t)).
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

We will use A_1 for scanning, A_0 for selecting.

Lemma

For every computable, infinite, co-infinite set Z,

 $A = A_0 \oplus_Z A_1$ KL-stocjastic $\Rightarrow \dim_H^1 A_0 = 1$ or $\dim_H^1 A_1 = 1$.

- By scanning only bits of A₁, we can, for every *t*, compute g₁(m_t). From the strings {w₀, ... w_{g₁(m_t)}} compute a selection rule as described above.
- Infinitely often some w ∈ {w₀, ... w_{g₁(m_t)}} is a substring of A₀ at m_t, so the selection rule selects a long, unbalanced substring from w = A₀(m_t) ... A₀(m_t + |w| − 1).

うして 山田 マイボット ボット ショックタイ

- Non-monotonicity makes (computable) betting strategies much more powerful.
- In many ways, KL-randomness behaves like Martin-Löf randomness.
- However, none of the properties studied is a sufficient condition for ML-randomness; on the contrary, there are examples "far from ML-randomness".
- A proof that KL-randomness is equivalent to ML-randomness would would give a striking argument against Schnorr's criticism of Martin-Löf randomness.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●