# Kolmogorov-Loveland Randomness and Stochasticity 

Wolfgang Merkle ${ }^{1}$ Joseph Miller ${ }^{2}$ André Nies ${ }^{3}$ Jan Reimann ${ }^{1}$ Frank Stephan ${ }^{4}$
${ }^{1}$ Institut für Informatik, Universität Heidelberg
${ }^{2}$ Department of Mathematics, Indiana University
${ }^{3}$ Department of Computer Science, University of Auckland
${ }^{4}$ Department of Mathematics, National University of Singapore
March 19, 2005

## Overview

1 Motivation

## Overview

1 Motivation

2 Betting Games

## Overview

1 Motivation

2 Betting Games
3 Previous Work
■ Resource-Bounded Betting Games
■ Muchnik's Theorem

## Overview

1 Motivation

2 Betting Games
3 Previous Work
■ Resource-Bounded Betting Games
■ Muchnik's Theorem

4 The Power of Two

- Splitting Properties
- Counterexample


## Overview

1 Motivation

2 Betting Games
3 Previous Work
■ Resource-Bounded Betting Games
■ Muchnik's Theorem

4 The Power of Two

- Splitting Properties

■ Counterexample
5 Kolmogorov-Loveland Stochasticity

## Schnorr's Criticism

■ Martin-Löf randomness is a widely accepted formulation of randomness for individual sequences.
■ ML-randomness coincides with incompressibility in terms of (prefix-free) Kolmogorov complexity.

- Schnorr's criticism: ML-randomness is algorithmically too strict. Notions of randomness should be based on computable objects, e.g. computable betting games.
- This talk: Is it possible to do this and still obtain a randomness concept as powerful as ML-randomness/incompressibility?
■ Key ingredient: non-monotonicity.


## Betting Games

Given: unknown infinite binary sequence $A$
A round in the game

- Start with a capital of 1.

■ Select a position $k \in \mathbb{N}$ and specify a stake $v \in[0,1]$.

- Predict the bit $A(k)$.
- If the prediction is correct, the capital is multiplied by $1+v$. Otherwise the stake is lost.
■ Continue: pick a new position not selected before.
A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?


## Betting Games

Given: unknown infinite binary sequence $A$
A round in the game

- Start with a capital of 1.

■ Select a position $k \in \mathbb{N}$ and specify a stake $v \in[0,1]$.

- Predict the bit $A(k)$.
- If the prediction is correct, the capital is multiplied by $1+v$. Otherwise the stake is lost.
■ Continue: pick a new position not selected before.
A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Capital: 1

## Betting Games

Given: unknown infinite binary sequence $A$
A round in the game

- Start with a capital of 1.

■ Select a position $k \in \mathbb{N}$ and specify a stake $v \in[0,1]$.

- Predict the bit $A(k)$.
- If the prediction is correct, the capital is multiplied by $1+v$. Otherwise the stake is lost.
■ Continue: pick a new position not selected before.
A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Capital: 1
Stake: 0.5

## Betting Games

Given: unknown infinite binary sequence $A$
A round in the game

- Start with a capital of 1.

■ Select a position $k \in \mathbb{N}$ and specify a stake $v \in[0,1]$.
■ Predict the bit $A(k)$.

- If the prediction is correct, the capital is multiplied by $1+v$. Otherwise the stake is lost.
■ Continue: pick a new position not selected before.



## Betting Games

Given: unknown infinite binary sequence $A$
A round in the game

- Start with a capital of 1.

■ Select a position $k \in \mathbb{N}$ and specify a stake $v \in[0,1]$.
■ Predict the bit $A(k)$.

- If the prediction is correct, the capital is multiplied by $1+v$. Otherwise the stake is lost.
■ Continue: pick a new position not selected before.



## Betting Games

Given: unknown infinite binary sequence $A$
A round in the game

- Start with a capital of 1.

■ Select a position $k \in \mathbb{N}$ and specify a stake $v \in[0,1]$.
■ Predict the bit $A(k)$.

- If the prediction is correct, the capital is multiplied by $1+v$. Otherwise the stake is lost.
■ Continue: pick a new position not selected before.



## Betting Strategies

## Definition

- A betting strategy is a partial function that, given the outcomes of the previous rounds, determines
- the position on which to bet next,
- the stake to bet,
- the value predicted.
- Formally, a betting strategy is a partial mapping

$$
b:(\mathbb{N} \times\{0,1\})^{*} \rightarrow \mathbb{N} \times[0,1] \times\{0,1\}
$$

■ A betting strategy is monotone if the positions to bet on are chosen in an increasing order.
■ A betting strategy $b$ succeeds on sequence $S$ if the capital grows unbounded when playing against $S$ according to $b$.

## Randomness as Unpredictability

## Definition

■ A sequence is Kolmogorov-Loveland random (KL-random) if no (partial) computable betting strategy succeeds on it.

- A sequence is computably random if no computable monotone betting strategy succeeds on it.


## Randomness as Typicalness

## Definition

■ A Martin-Löf test (ML-test) is a uniformly computable sequence $\left(V_{n}\right)_{n \in \mathbb{N}}$ of c.e. sets of strings such that for all $n$,

$$
\sum_{\sigma \in V_{n}} 2^{-|\sigma|} \leqslant 2^{-n}
$$

■ An ML-test $\left(V_{n}\right)$ covers a sequence $A$ if $(\forall n)\left(\exists \sigma \in V_{n}\right) \sigma \sqsubset A$.
■ A sequence is Martin-Löf random (ML-random) if it is not covered by an ML-test.
■ A Schnorr test is an ML-test ( $V_{n}$ ) such that the real number $\sum_{\sigma \in V_{n}} 2^{-|\sigma|}$ is uniformly computable. A sequence is Schnorr random if it not covered by a Schnorr test.

## Relations between Randomness Notions



## Relations between Randomness Notions

## Open Question (Muchnik, Semenov, and Uspensky, 1998)

Is KL-randomness equivalent to ML-randomness?


## Resource-Bounded Betting Games

Buhrman, van Melkebeek, Regan, Sivakumar, and Strauss (2000) studied resource-bounded betting strategies.

## Resource-Bounded Betting Games

Buhrman, van Melkebeek, Regan, Sivakumar, and Strauss (2000) studied resource-bounded betting strategies.

## Some Results

■ If pseudorandom generators computable in exponential time ( $\mathrm{E}, \mathrm{EXP}$ ) with exponential security exist, then every betting strategy computable in exponential time can be simulated by an exponential time monotone betting strategy.
■ If exponential time betting strategies have the finite union property, then BPP $\neq$ EXP.

## Example: Computably Enumerable Sets

## Example

No partial computable non-monotonic betting strategy can succeed on all computably enumerable sets.

## Example: Computably Enumerable Sets

## Example

No partial computable non-monotonic betting strategy can succeed on all computably enumerable sets.

Given a computable betting strategy $b$, define a c.e. set $W$ such that $b$ does not succeed on $W$ by enumerating elements into $W$ according to the places selected by $b$.

## Example: Computably Enumerable Sets

## Fact

There exist computable non-monotonic betting strategies $b_{0}$ and $b_{1}$ such that for every c.e. set $W$, at least one of $b_{0}$ and $b_{1}$ will succeed on W.
$b_{0}$ succeeds on all rather sparse sets, whereas $b_{1}$ succeeds if a lot of elements are enumerated into the set $W$.

## Example: Computably Enumerable Sets

## Fact

There exist computable non-monotonic betting strategies $b_{0}$ and $b_{1}$ such that for every c.e. set $W$, at least one of $b_{0}$ and $b_{1}$ will succeed on W.
$b_{0}$ succeeds on all rather sparse sets, whereas $b_{1}$ succeeds if a lot of elements are enumerated into the set $W$.

## Failure of finite union property

Computable betting strategies do not have the finite union property.

## Kolmogorov Complexity

## Definition

Let $U$ be a universal Turing machine. For a string $\sigma$ define the Kolmogorov complexity C of a string as

$$
\mathrm{C}(\sigma)=\mathrm{C}_{U}(\sigma)=\min \left\{|p|: p \in\{0,1\}^{*}, U(p)=\sigma\right\}
$$

i.e. $C(\sigma)$ is the length of the shortest $U$-program for $\sigma$.

Fact (Kolmogorov; Solomonoff)
$C$ is independent of the choice of $U$, up to an additive constant.

## Variant

Prefix-free complexity K. Based on prefix-free Turing-machines no two converging inputs are prefixes of one another.

## The Complexity of Martin-Löf Random Sequences

## Theorem (Schnorr)

Given a sequence $A$, if there exists a function

$$
h: \mathbb{N} \rightarrow \mathbb{N}
$$

such that for all $n$,

$$
\mathrm{K}\left(\boldsymbol{A} \Gamma_{h(n)}\right) \leqslant h(n)-n,
$$

then $A$ is not $M L$-random.

## The Complexity of Martin-Löf Random Sequences

## Theorem (Schnorr)

Given a sequence $A$, if there exists a function

$$
h: \mathbb{N} \rightarrow \mathbb{N}
$$

such that for all $n$,

$$
\mathrm{K}\left(\boldsymbol{A} \Gamma_{h(n)}\right) \leqslant h(n)-n,
$$

then $A$ is not $M L$-random.

## The Complexity of KL-Random Sequences

## Theorem (Muchnik)

Given a sequence $A$, if there exists a computable function

$$
h: \mathbb{N} \rightarrow \mathbb{N}
$$

such that for all $n$,

$$
\mathrm{K}\left(A \Gamma_{h(n)}\right) \leqslant h(n)-n,
$$

then $A$ is not $K L$-random.

## The Complexity of KL-Random Sequences

Note that this is fails for computably random sequences. In fact, there can be computably random sequences of very low complexity. [Muchnik; Merkle]

## Extracting Subsequences

Let $Z$ be an infinite, co-infinite subset of $\mathbb{N}$.

## Extracting Subsequences

Let $Z$ be an infinite, co-infinite subset of $\mathbb{N}$.

## Definition

Given a sequence $A$, the $Z$-subsequence of $A, A \upharpoonright_{z}$, is defined as

$$
A \upharpoonright_{Z}(n)=1 \Leftrightarrow A\left(p_{Z}(n)\right)=1
$$

where $p_{z}(n)$ is the $n+1$ st element of $Z$.

## Extracting Subsequences

Let $Z$ be an infinite, co-infinite subset of $\mathbb{N}$.

## Definition

Given a sequence $A$, the $Z$-subsequence of $A, A \upharpoonright_{z}$, is defined as

$$
A \upharpoonright_{Z}(n)=1 \Leftrightarrow A\left(p_{Z}(n)\right)=1
$$

where $p_{z}(n)$ is the $n+1$ st element of $Z$.

| $A$ | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Extracting Subsequences

Let $Z$ be an infinite, co-infinite subset of $\mathbb{N}$.

## Definition

Given a sequence $A$, the $Z$-subsequence of $A, A \upharpoonright_{z}$, is defined as

$$
A \upharpoonright_{Z}(n)=1 \Leftrightarrow A\left(p_{Z}(n)\right)=1
$$

where $p_{z}(n)$ is the $n+1$ st element of $Z$.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}A & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right) 0$

## Extracting Subsequences

Let $Z$ be an infinite, co-infinite subset of $\mathbb{N}$.

## Definition

Given a sequence $A$, the $Z$-subsequence of $A, A \upharpoonright_{z}$, is defined as

$$
A \upharpoonright_{Z}(n)=1 \Leftrightarrow A\left(p_{Z}(n)\right)=1
$$

where $p_{z}(n)$ is the $n+1$ st element of $Z$.


## Generalized Joins

## Definition

The $Z$-join of two sequences $A_{0}, A_{1}$,

$$
A_{0} \oplus z A_{1},
$$

is defined as the unique sequence $A$ such that

$$
A \upharpoonright_{Z}=A_{1} \quad \text { and } \quad A \upharpoonright_{\bar{Z}}=A_{0}
$$

## Generalized Joins

## Definition

The $Z$-join of two sequences $A_{0}, A_{1}$,

$$
A_{0} \oplus z A_{1},
$$

is defined as the unique sequence $A$ such that

$$
A \upharpoonright_{z}=A_{1} \quad \text { and } \quad A \Gamma_{\bar{Z}}=A_{0}
$$

## Generalized Joins

## Definition

The $Z$-join of two sequences $A_{0}, A_{1}$,

$$
A_{0} \oplus z A_{1},
$$

is defined as the unique sequence $A$ such that

$$
A \upharpoonright_{z}=A_{1} \quad \text { and } \quad A \Gamma_{\bar{z}}=A_{0}
$$

## Generalized Joins

## Definition

The $Z$-join of two sequences $A_{0}, A_{1}$,

$$
A_{0} \oplus z A_{1},
$$

is defined as the unique sequence $A$ such that

$$
A \upharpoonright_{Z}=A_{1} \quad \text { and } \quad A \upharpoonright_{\bar{Z}}=A_{0}
$$



## Generalized Joins

## Definition

The $Z$-join of two sequences $A_{0}, A_{1}$,

$$
A_{0} \oplus z A_{1},
$$

is defined as the unique sequence $A$ such that

$$
A \upharpoonright_{Z}=A_{1} \quad \text { and } \quad A \Gamma_{\bar{Z}}=A_{0}
$$



## Generalized Joins

## Definition

The $Z$-join of two sequences $A_{0}, A_{1}$,

$$
A_{0} \oplus z A_{1},
$$

is defined as the unique sequence $A$ such that

$$
A \upharpoonright_{z}=A_{1} \quad \text { and } \quad A \upharpoonright_{\bar{Z}}=A_{0}
$$

## Splitting Properties

If we split a KL-random sequence effectively, both subsequences obtained must be KL-random relative to each other.

## Splitting Properties

If we split a KL-random sequence effectively, both subsequences obtained must be KL-random relative to each other.

## Observation

Let $Z$ be a computable, infinite and co-infinite set of natural numbers, and let $A=A_{0} \oplus z A_{1} . A$ is KL-random if and only if
$A_{0}$ is $\mathrm{KL}^{A_{1}}$-random and $A_{1}$ is $\mathrm{KL}^{A_{0}}$-random.

## Splitting Properties

## Observation

Let $Z$ be a computable, infinite and co-infinite set of natural numbers, and let $A=A_{0} \oplus z A_{1}$. $A$ is KL-random if and only if

$$
A_{0} \text { is } \mathrm{KL}^{A_{1}} \text {-random and } A_{1} \text { is } \mathrm{KL}^{A_{0}} \text {-random. }
$$

## Splitting Properties

## Observation

Let $Z$ be a computable, infinite and co-infinite set of natural numbers, and let $A=A_{0} \oplus z A_{1}$. $A$ is KL-random if and only if

$$
A_{0} \text { is } \mathrm{KL}^{A_{1}} \text {-random and } A_{1} \text { is } \mathrm{KL}^{A_{0}} \text {-random. }
$$

## Splitting Properties

## Observation

Let $Z$ be a computable, infinite and co-infinite set of natural numbers, and let $A=A_{0} \oplus z A_{1}$. $A$ is KL-random if and only if
$A_{0}$ is $\mathrm{KL}^{A_{1}}$-random and $A_{1}$ is $\mathrm{KL}^{A_{0}}$-random.

Proof of " $\Rightarrow$ ":
■ Suppose $b_{1}$ computable in $A_{1}$ succeeds on $A_{0}$.
■ Devise betting strategy successful on $A$ :

- Scan the $Z$-positions of the sequence (corresponding to the places where $A_{1}$ is coded).
- Find a new initial segment which allows to compute a new value of $b_{1}$.
- Bet on the $\bar{Z}$-positions of the sequence according to $b_{1}$.


## Splitting Properties

We can use this observation to show that one "half" of a KL-random sequence must always be ML-random.

## Splitting Properties

We can use this observation to show that one "half" of a KL-random sequence must always be ML-random.

## Theorem

Let $Z$ be a computable, infinite and co-infinite set of natural numbers. If the sequence $A=A_{0} \oplus_{z} A_{1}$ is $K L$-random, then at least one of $A_{0}, A_{1}$ is Martin-Löf random.

## Splitting Properties

## Theorem

Let $Z$ be a computable, infinite and co-infinite set of natural numbers. If the sequence $A=A_{0} \oplus_{z} A_{1}$ is $K L$-random, then at least one of $A_{0}, A_{1}$ is Martin-Löf random.

## Splitting Properties

## Theorem

Let $Z$ be a computable, infinite and co-infinite set of natural numbers. If the sequence $A=A_{0} \oplus_{z} A_{1}$ is $K L$-random, then at least one of $A_{0}, A_{1}$ is Martin-Löf random.

## Splitting Properties

## Theorem

Let $Z$ be a computable, infinite and co-infinite set of natural numbers. If the sequence $A=A_{0} \oplus_{z} A_{1}$ is $K L$-random, then at least one of $A_{0}, A_{1}$ is Martin-Löf random.

■ Suppose neither $A_{0}$ nor $A_{1}$ is ML-random.

- Then there are Martin-Löf tests ( $U_{n}^{0}: n \in \mathbb{N}$ ) and ( $\left.U_{n}^{1}: n \in \mathbb{N}\right)$ with $U_{n}^{i}=\left\{u_{n, 0}^{i}, u_{n, 1}^{i}, \ldots\right\}$, such that $\left(U_{n}^{i}\right)$ covers $A_{i}$.
■ Define functions $f_{0}, f_{1}$ by $f_{i}(n)=\min \left\{k \in \mathbb{N}: u_{n, k}^{i} \sqsubset A_{i}\right\}$.
- For some $i,(\exists m) f_{i}(m) \geqslant f_{1-i}(m)$.


## Splitting Properties

## Theorem

Let $Z$ be a computable, infinite and co-infinite set of natural numbers. If the sequence $A=A_{0} \oplus_{z} A_{1}$ is $K L$-random, then at least one of $A_{0}, A_{1}$ is Martin-Löf random.

■ Define a new test $\left(V_{n}\right)$ by

$$
V_{n}=\bigcup_{m>n}\left\{u_{0}^{1-i}, \ldots, u_{f_{i}(m)}^{1-i}\right\} .
$$

- $\left(V_{n}\right)$ is a Schnorr test relative to the oracle $A_{i}$ and covers $A_{1-i}$, so $A_{1-i}$ is not Schnorr ${ }^{A_{i} \text {-random. }}$
■ KL-randomness implies Schnorr-randomness, so $A_{1-i}$ is not $\mathrm{KL}^{A_{i}}$-random, and hence $A$ is not KL -random.


## Splitting Properties

This result can be improved.
$Z$ has density $\delta$ if $\lim _{m \rightarrow \infty} \mid\{Z \cap\{0, \ldots, m-1\} \mid / m=\delta$.

## Splitting Properties

This result can be improved.
$Z$ has density $\delta$ if $\lim _{m \rightarrow \infty} \mid\{Z \cap\{0, \ldots, m-1\} \mid / m=\delta$.

## Theorem

Let $A$ be a KL-random sequence and let $\delta<1$ be rational. Then there is a computable set $Z$ of density at least $\delta$ such that $A \upharpoonright_{z}$ is ML-random.

## Splitting Properties

This result can be improved.
$Z$ has density $\delta$ if $\lim _{m \rightarrow \infty} \mid\{Z \cap\{0, \ldots, m-1\} \mid / m=\delta$.

## Theorem

Let $A$ be a KL-random sequence and let $\delta<1$ be rational. Then there is a computable set $Z$ of density at least $\delta$ such that $A \upharpoonright z$ is $M L$-random.

Proof uses a result by Van Lambalgen (1987), who showed that $A=A_{0} \oplus z A_{1}$ is ML-random if and only if $A_{0}$ is ML-random and $A_{1}$ is $\mathrm{ML}^{A_{0}}$-random.

## Splitting Properties

This result can be improved.
$Z$ has density $\delta$ if $\lim _{m \rightarrow \infty} \mid\{Z \cap\{0, \ldots, m-1\} \mid / m=\delta$.

## Theorem

Let $A$ be a KL-random sequence and let $\delta<1$ be rational. Then there is a computable set $Z$ of density at least $\delta$ such that $A \upharpoonright z$ is $M L$-random.

Proof uses a result by Van Lambalgen (1987), who showed that $A=A_{0} \oplus z A_{1}$ is ML-random if and only if $A_{0}$ is ML-random and $A_{1}$ is $\mathrm{ML}^{A_{0}}$-random.

## A Counterexample

The splitting property of KL-random sequences is not a sufficient criterion for ML-randomness.

## A Counterexample

The splitting property of KL-random sequences is not a sufficient criterion for ML-randomness.

## Theorem

There is a sequence $A$ which is not computably random such that for each computable, infinite and co-infinite set $Z, A \upharpoonright z$ is ML-random.

## Kolmogorov-Loveland Stochasticity

One can modify betting strategies to obtain the concept of selection rules.

## Kolmogorov-Loveland Stochasticity

One can modify betting strategies to obtain the concept of selection rules.

Selection rules
■ Select a position $k \in \mathbb{N}$.

- Specify whether to include the bit $A(k)$ in the selected subsequence.
- After the bit is revealed pick a new position not selected before.


## Kolmogorov-Loveland Stochasticity

## Definition

A sequence $A$ is Kolmogorov-Loveland stochastic if every infinite subsequence of $A$ selected by a computable selection rule has limit frequency $1 / 2$.

## Kolmogorov-Loveland Stochasticity

## Definition

A sequence $A$ is Kolmogorov-Loveland stochastic if every infinite subsequence of $A$ selected by a computable selection rule has limit frequency $1 / 2$.

Every ML-random sequence is KL-stochastic.

## Kolmogorov-Loveland Stochasticity

## Definition

A sequence $A$ is Kolmogorov-Loveland stochastic if every infinite subsequence of $A$ selected by a computable selection rule has limit frequency $1 / 2$.

Every ML-random sequence is KL-stochastic.
Shen (1988) showed that there are KL-stochastic sequences not ML-random.
He used Bernoulli distributions $\left(\beta_{n}, 1-\beta_{n}\right)$, with

$$
\sum_{n}\left(1 / 2-\beta_{n}\right)^{2}=\infty
$$

## Effective Dimension

- There exists an interesting connection between the asymptotic complexity of sequences and Hausdorff dimension.
■ Hausdorff dimension is defined via Hausdorff measures. Similar to Lebesgue measure, one can define effective versions [Lutz 2000].
■ Effective dimension, $\operatorname{dim}_{\mathrm{H}}^{1}$, can be characterized in terms of Kolmogorov complexity.


## Effective Dimension

- There exists an interesting connection between the asymptotic complexity of sequences and Hausdorff dimension.
■ Hausdorff dimension is defined via Hausdorff measures. Similar to Lebesgue measure, one can define effective versions [Lutz 2000].
- Effective dimension, $\operatorname{dim}_{\mathrm{H}}^{1}$, can be characterized in terms of Kolmogorov complexity.


## Theorem (Ryabko; Mayordomo)

The effective dimension of a sequence $A$ is given by

$$
\operatorname{dim}_{\mathrm{H}}^{1} A=\liminf _{n \rightarrow \infty} \frac{\mathrm{~K}\left(A \upharpoonright_{n}\right)}{n} .
$$

## Effective Dimension

Theorem (Ryabko; Mayordomo)
The effective dimension of a sequence $A$ is given by

$$
\operatorname{dim}_{H}^{1} A=\liminf _{n \rightarrow \infty} \frac{\mathrm{~K}\left(A \Gamma_{n}\right)}{n} .
$$

## The Dimension of KL-Stochastic Sequences

It turns out that even the KL-stochastic sequences are already very close to incompressible.

## The Dimension of KL-Stochastic Sequences

It turns out that even the KL-stochastic sequences are already very close to incompressible.

Theorem
If $R$ is $K L$-stochastic, then $\operatorname{dim}_{\mathrm{H}}^{1} R=1$.

## The Dimension of KL-Stochastic Sequences

It turns out that even the KL-stochastic sequences are already very close to incompressible.

## Theorem

If $R$ is $K L$-stochastic, then $\operatorname{dim}_{\mathrm{H}}^{1} R=1$.

This implies, in particular, that all KL-random sequences have dimension 1, too.

## The Dimension of KL-Stochastic Sequences

Theorem
If $R$ is $K L$-stochastic, then $\operatorname{dim}_{H}^{1} R=1$.

## The Dimension of KL-Stochastic Sequences

Theorem
If $R$ is $K L$-stochastic, then $\operatorname{dim}_{\mathrm{H}}^{1} R=1$.

## The Dimension of KL-Stochastic Sequences

Theorem
If $R$ is $K L$-stochastic, then $\operatorname{dim}_{\mathrm{H}}^{1} R=1$.

- The main ingredient of the proof:
$A=A_{0} \oplus z A_{1}$ KL-stochastic $\Rightarrow \operatorname{dim}_{\mathrm{H}}^{1} A_{0}=1$ or $\operatorname{dim}_{\mathrm{H}}^{1} A_{1}=1$.

■ Then relativize to obtain arbitrary dense subsequences of dimension 1.

- Finally, use

$$
\operatorname{dim}_{H}^{1} A_{0} \oplus z A_{1} \geqslant \delta_{Z} \operatorname{dim}_{H}^{1} A_{1}+\left(1-\delta_{Z}\right) \operatorname{dim}_{H}^{1, A_{1}} A_{0},
$$

where $\delta_{z}$ denotes the density of $Z$. (Proof uses symmetry of algorithmic information.)

## The Dimension of KL-Stochastic Sequences

$$
A=A_{0} \oplus z A_{1} \text { KL-stochastic } \Rightarrow \operatorname{dim}_{H}^{1} A_{0}=1 \text { or } \operatorname{dim}_{\mathrm{H}}^{1} A_{1}=1 .
$$

## The Dimension of KL-Stochastic Sequences

## Lemma

For every computable, infinite, co-infinite set $Z$,

$$
A=A_{0} \oplus_{Z} A_{1} K L \text {-stocjastic } \Rightarrow \operatorname{dim}_{H}^{1} A_{0}=1 \text { or } \operatorname{dim}_{H}^{1} A_{1}=1 .
$$

## The Dimension of KL-Stochastic Sequences

## Lemma

For every computable, infinite, co-infinite set $Z$,

$$
A=A_{0} \oplus_{z} A_{1} K L \text {-stocjastic } \Rightarrow \operatorname{dim}_{\mathrm{H}}^{1} A_{0}=1 \text { or } \operatorname{dim}_{\mathrm{H}}^{1} A_{1}=1 .
$$

■ Suppose $\operatorname{dim}_{\mathrm{H}}^{1} A_{0}, A_{1}<\alpha<1$.
■ Find a selection rule that selects from $A$ an unbalanced subsequence.
■ The set of $\alpha$-compressible strings $(\mathrm{K}(w) \leqslant \alpha|w|)$ can be effectively enumerated $\left\{w_{0}, w_{1}, \ldots\right\}$.
■ If a sequence has infinitely many $\alpha$-compressible initial segments, it must also have infinitely many $\alpha$-compressible substrings.

## The Dimension of KL-Stochastic Sequences

## Lemma

For every computable, infinite, co-infinite set $Z$,

$$
A=A_{0} \oplus_{z} A_{1} K L \text {-stocjastic } \Rightarrow \operatorname{dim}_{\mathrm{H}}^{1} A_{0}=1 \text { or } \operatorname{dim}_{\mathrm{H}}^{1} A_{1}=1 .
$$

■ Idea: Use the compressible substrings to select an unbalanced subsequence.

- Known techniques: From a finite set of compressible strings we can compute a selection rule which does this. (Conversion of martingales into selection rules)
- The function

$$
g_{r}(m)=\mu i\left[w_{i} \text { substring of } A_{r} \text { at position } m \text { and }\left|w_{i}\right| \geqslant c m\right]
$$

is total (for any constant $c$ ).

## The Dimension of KL-Stochastic Sequences

## Lemma

For every computable, infinite, co-infinite set $Z$,

$$
A=A_{0} \oplus_{z} A_{1} K L \text {-stocjastic } \Rightarrow \operatorname{dim}_{\mathrm{H}}^{1} A_{0}=1 \text { or } \operatorname{dim}_{\mathrm{H}}^{1} A_{1}=1 .
$$

■ Let

$$
m_{t+1}=m_{t}+\max \left\{\left|w_{i}\right|: i \leqslant \max \left\{g_{0}\left(m_{t}\right), g_{1}\left(m_{t}\right)\right\}\right\}
$$

The $m_{t}$ will be the "selection blocks".
■ Now w.l.o.g. assume that

$$
\exists^{\infty} t\left(g_{0}\left(m_{t}\right) \leqslant g_{1}\left(m_{t}\right)\right)
$$

We will use $A_{1}$ for scanning, $A_{0}$ for selecting.

## The Dimension of KL-Stochastic Sequences

## Lemma

For every computable, infinite, co-infinite set $Z$,

$$
A=A_{0} \oplus_{z} A_{1} K L \text {-stocjastic } \Rightarrow \operatorname{dim}_{\mathrm{H}}^{1} A_{0}=1 \text { or } \operatorname{dim}_{\mathrm{H}}^{1} A_{1}=1 .
$$

■ By scanning only bits of $A_{1}$, we can, for every $t$, compute $g_{1}\left(m_{t}\right)$. From the strings $\left\{w_{0}, \ldots w_{g_{1}\left(m_{t}\right)}\right\}$ compute a selection rule as described above.
■ Infinitely often some $w \in\left\{w_{0}, \ldots w_{g_{1}\left(m_{t}\right)}\right\}$ is a substring of $A_{0}$ at $m_{t}$, so the selection rule selects a long, unbalanced substring from $w=A_{0}\left(m_{t}\right) \ldots A_{0}\left(m_{t}+|w|-1\right)$.

## Conclusion

■ Non-monotonicity makes (computable) betting strategies much more powerful.
■ In many ways, KL-randomness behaves like Martin-Löf randomness.
■ However, none of the properties studied is a sufficient condition for ML-randomness; on the contrary, there are examples "far from ML-randomness".
■ A proof that KL-randomness is equivalent to ML-randomness would would give a striking argument against Schnorr's criticism of Martin-Löf randomness.

