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Measures on Cantor Space
Outer measures from premeasures

Approximate sets from outside by open sets and weigh with a
general measure function.

I A premeasure is a function ρ : 2<ω → R+
0 ∪ {∞}.

I One can obtain an outer measure µρ from ρ by letting

µρ(X ) = inf
C⊆2<ω

{∑
σ∈C

ρ(σ) :
⋃

σ∈C

Nσ ⊇ X

}
,

where Nσ is the basic open cylinder induced by σ.
(Set µρ(∅) = 0.)

The resulting µ = µρ is a countably subadditive, monotone set
function, an outer measure.



Measures on Cantor Space
From outer measures to measures

Measurable sets:

I Restriction to sets A which satisfy

(∀Y ) µ(Y ) = µ(Y ∩ A) + µ(Y \ A),

yields the measurable sets.

I The measurable sets form a σ-algebra, and µ is an additive
set function on this σ-algebra.

The more “well-behaved” ρ is, the better are the regularity
properties of µρ.

I In particular, if ρ is already additive on cylinders, then the
µ-measurable sets comprise the Borel sets, and µ coincides
with ρ on the Borel sets.



Geometric Measures

“Geometric” measures should be translation invariant.

I Geometric outer measures: ρ depends only on |σ|.

I Most famous example: Lebesgue measure λ given by
ρ(σ) = 2−|σ|.

I More general: function h, h(0) = 0, right-continuous;
ρ(σ) = h(2−|σ|).

I In Cantor space: h : N → R+
0 , h(n) → ∞ as n → ∞;

ρ(σ) = 2−h(|σ|).



Measures on Cantor Space
Nullsets

The way we constructed outer measures, µ(A) = 0 is equivalent to
the existence of a sequence (Cn)n∈ω, Cn ⊆ 2<ω, such that for all
n,

A ⊆
⋃
Cn

Nσ and
∑
Cn

ρ(σ) 6 2−n.

Thus,

every nullset is contained in a Gδ nullset.



Randomness
Effective nullsets and randomness

By requiring that the covering nullset is effectively Gδ, we obtain a
notion of effective nullsets.

Definition

I Let µ (= µρ) be an outer measure based on a computable
premeasure ρ. A set A is effectively µ-null if there exists a
recursive function f such that for all n,

A ⊆
⋃

σ∈Wf (n)

Nσ and
∑

σ∈Wf (n)

ρ(σ) 6 2−n.

I A real X ∈ 2ω is µ-random iff {X } is not µ-null.



Hausdorff Measures and Hausdorff Dimension

For ρ(σ) = 2−|σ|s , s a nonnegative real number, we obtain Hs , the
s-dimensional Hausdorff measure.

I Note: The actual definition of the Hausdorff measure Hh is a
little more involved. (One wants to ensure that for the
resulting measures, all Borel sets are measurable.)

I We are primarily concerned with nullsets. For nullsets the
more involved definition coincides with the one given here.

The Hausdorff dimension assigns to every set of reals an
“adequate” measure.

Definition

The Hausdorff dimension of A ⊆ 2ω is defined as

dimH A = inf{s > 0 : Hs(A) = 0}



Properties of Hausdorff Dimension

I Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.

I Monotony: A ⊆ B implies dimH(A) 6 dimH(B).

I Stability: For A1,A2, · · · ⊆ 2ω it holds that

dimH(
⋃

Ai ) = sup {dimH(Ai )}.

I Important geometric properties:

I If F is Hölder continuous, i.e. if there are constants c , r > 0
for which

(∀x , y) d(F (x),F (y)) 6 cd(x , y)r ,

then
dimH F (A) 6 (1/r) dimH(A).

I For r = 1, F is Lipschitz continuous. If F is bi-Lipschitz, then

dimH h(A) = dimH(A).



Hausdorff Dimension and Martingales

Hausdorff dimension can be expressed in terms of martingales.

I Recall that a martingale is a function d : 2<ω → [0,∞) such
that 2d(σ) = d(σ_0) + d(σ_1).

I Given s > 0, a martingale d is called s-successful on a real
X ∈ 2ω if

lim sup d(X �n)/2
(1−s)n = ∞.

I Note that the usual success-notion for martingales is just
being 1-successful.

Theorem (Lutz)

For any set A ⊆ 2ω,

dimH A = inf{s : some martingale d is s-successful on all X ∈ A}.



Packing Dimension

Lutz’ martingale characterization allows for an easy
characterization of another dimension concept, packing dimension,
which can be seen as a dual to Hausdorff dimension.

I Instead of “covering” a set with open balls, “pack” it with
disjoint balls.

Given 0 < s 6 1, a martingale d is strongly s-successful on a real
X if

lim inf d(X �n)/2
(1−s)n → ∞.

Theorem (Athreya, Hitchcock, Lutz, and Mayordomo)

For any set A ⊆ 2ω,

dimP A = inf{s : some d is strongly s-successful on all X ∈ A}.



Effective Hausdorff Dimension

Hausdorff dimension can be effectivized using effective Hausdorff
measures.

Definition (Lutz)

The Σ0
1-Hausdorff dimension, or simply 1-dimension (constructive

dimension), of A ⊆ 2ω is defined as

dim1
H A = inf {s ∈ Q+

0 : A is effectively Hs -null}.

I There are single reals of non-zero dimension: every λ-random
real has dimension one.

I 1-dimension has an important stability property [Lutz]:

dim1
H A = sup {dim1

H{X } : X ∈ A}.



Effective Dimension and Algorithmic Entropy

Effective Hausdorff dimension can be interpreted as a degree of
incompressibility.

Theorem ((Ryabko); Mayordomo)

For every real X ,

dim1
H X = lim inf

n→∞ K(X �n)

n
.



Effective Dimension and Algorithmic Entropy
Effective packing dimension

1-packing dimension (constructive strong dimension) can be
effectivized using the martingale characterization by Athreya et al.

Theorem (Athreya et al)

For every real X ,

dim1
P X = lim sup

n→∞
K(X �n)

n
.



Effective Hausdorff Dimension
The three basic examples

Let 0 < r < 1 rational. Given a Martin-Löf random set X , define
Xr by

Xr (m) =

{
X (n) if m = bn/rc,
0 otherwise.

Then dim1
H Xr = r .

I Geometry: Hölder transformation of Cantor set

I Information theory: Insert redundancy



Effective Hausdorff Dimension
The three basic examples

Let µp be a Bernoulli (“coin-toss”) measure with bias
p ∈ Q ∩ [0, 1], and let X be random with respect to µp.
Then

dim1
H X = H(µp) := −[p log p + p log(1 − p)].

[Lutz; Eggleston]

I Kolmogorov complexity can be seen as an effective version of
entropy.



Effective Hausdorff Dimension
The three basic examples

Let U be a universal, prefix-free machine. Given a computable real
number 0 < s 6 1, the binary expansion of the real number

Ω(s) =
∑

σ∈dom(U)

2−
|σ|
s

has effective dimension s [Tadaki].

I Note that Ω(1) is just Chaitin’s Ω.



Effective Hausdorff Dimension
For all examples randomness is extractible

Each of the three examples actually computes a Martin-Löf
random real.

I This is obvious for the “diluted” sequence.

I For recursive Bernoulli measures, one may use
Von-Neumann’s trick to turn a biased random real into a
uniformly distributed random real.
More generally, any real which is random with respect to a
recursive measure computes a Martin-Löf random real [Levin;
Kautz].

I Ω(s) computes a fixed-point free function. It is of r.e. degree,
and hence it follows from the Arslanov completeness criterion
that Ω(s) is Turing complete (and thus T-equivalent to a
Martin-Löf random real).



The Dimension Problem
Are there reals of “genuine” non-integral dimension?

The stability property implies that the Turing lower cone of each of
the three examples has effective dimension 1.

Question

Are there any Turing lower cones of non-integral dimension?

I Any such lower cone would come from a real of non-integral
dimension for which it is not possible to extract some content
of higher degree of randomness effectively.



Many-One Reducibility

Theorem (Reimann and Terwijn)

Let µp be a computable Bernoulli measure with bias p. If X is
µp-random, then

Y 6m X ⇒ dim1
H Y 6 H(µp).

Proof.

I Given an m-reduction f , define
F = {n : (∀m < n)f (m) 6= f (n)}, so F is the set of all positions
of Y , where an instance of X is queried for the first time.

I F induces a Kolmogorov-Loveland place selection rule. If X is
µp-random, this selection rule will yield a new sequence with
the same limit frequency as X .



WTT-Reducibility

This technique does not extend to weaker reducibilities, since for
Bernoulli measures the Levin-Kautz result holds for a total Turing
reduction.

Theorem (Reimann and Nies)

For each rational α, 0 6 α 6 1, there is a real X 6wtt ∅ ′ such that

dim1
H X = α and (∀Z 6wtt X ) dim1

H Z 6 α.



A Wtt Lower Cone of Non-Integral Dimension
The strategy

Requirements:

R〈e,j〉 : Z = Ψe(X ) ⇒ ∃(k > j) K (Z �k) 6+ (α+ 2−j)k

where (Ψe) is a uniform listing of wtt reduction procedures.

I We can assume each Ψe also has a certain (non-trivial) lower
bound on the use ge , because otherwise the reduction would
decrease complexity anyway.



A Wtt Lower Cone of Non-Integral Dimension
The strategy

I Define a length kj where we intend to compress Z , and let
mj = ge(kj).

I Define σj of length mj in a way that, if x = Ψ
σj
e is defined

then we compress it down to (α+ 2−bj )kj , by constructing an
appropriate nullset L.

I The opponent’s answer could be to remove σj from P. (σj is
not of high dimension.)

I In this case, the capital he spent for this removal exceeds
what we spent for our request, so we can account our capital
against his.

I Of course, usually σj is much longer than x . So we will only
compress x when the measure of oracle strings computing it is
large.



A Wtt Lower Cone of Non-Integral Dimension
An important Lemma

I We assume that P is effectively approximated by clopen sets
Ps .

Lemma

Let C be a clopen class such that C ⊆ Ps and C ∩ Pt = ∅ for
stages s < t. Then

Ωt −Ωs > (λC )α.



A Wtt Lower Cone of Non-Integral Dimension
Combining the strategies Rj

I In the course of the construction, some Rj might have to pick
a new σj .

I In this case we have to initialize all Rn of lower priority
(n > j).

I We have to make sure that this does not make us enumerate
too much measure into L.

I We therefore have to assign a new length kn to the strategies
Rn.

I For this, it is important to know the use of the reduction
related to Rj .



The Turing Case

For the Turing case, the best known result is the following.

Theorem (Kjos-Hanssen, Merkle, and Stephan)

There exists recursive, non-decreasing, unbounded function h and
a real X such that for all n,

K (X �n) > h(n) (*)

and X does not compute a Martin-Löf random real.

I The condition (∗) can be interpreted in terms of (generalized)
Hausdorff measures. Reals satisfying (∗) are called complex.

I A real is complex with recursive bound h iff it is not effectively

Hh̃-null, where h̃ = 2−h(n).



Diagonally Non-Recursive Functions

A function f is diagonally nonrecursive (dnr) if for all n,
f (n) 6= ϕn(n).

I Call a function f h-bounded if f (n) 6 h(n) for all n.

Theorem (Kumabe)

There exists a minimal degree that contains a dnr function which
is bounded by a recursive function.



Diagonally Non-Recursive Functions
Dnr functions and complex reals

Theorem (Kjos-Hanssen et al)

If X computes a recursively bounded dnr function f , then X
computes a complex real.

Proof:

I Assume f 6T X is g -bounded dnr. Code f into a real (e.g.
via unary representation); since f is rec. bounded, so are the
lengths of the codes.

I Let l > 0. For every σ, |σ| 6 l , consider program ψσ on input
(e, .):

I Wait till U(σ) converges.
I Check whether U(σ) correctly encodes a sequence of natural

numbers 〈y1, . . . , yk〉 with k > e.
I If so, return ye .



Diagonally Non-Recursive Functions
Dnr functions and complex reals

I By the Recursion Theorem, there exists a number eσ such
that ψσ(eσ, x) = φeσ(x) for all x . The fixed point can be
found effectively.

I Let e be the maximum of all eσ, |σ| 6 l , and let h(l) be larger
than the longest possible string needed to code a g -bounded
function.

I It follows that C (A�h(l)) > l .

I Suppose that U(σ) = A�h(n) for some |σ| 6 n.
I Then ψσ(eσ, eσ) returns f (eσ).
I But eσ is a fixed point for ψσ, so ψσ(eσ, eσ) = ϕeσ

(eσ),
contradicting the assumption that f is dnr.



Possible Strategies

To show that there exists a lower cone of non-integral dimension:

I Construct a minimal degree of positive dimension.

I Combine the wtt-technique with a hyperimmune-free
construction.

I Ω(s)-operators?

To show that no such cone exists:

I Show that every real of positive dimension computes a
measure for which it is random and apply the Levin-Kautz
technique.

I Use sophisticated extractors?


