Hausdorff Measures and Perfect Subsets

How random are sequences of positive dimension?

Jan Reimann

Institut für Informatik, Universität Heidelberg

• Caratheodory-Hausdorff construction on metric spaces: let $\mathcal{A} \subseteq 2^{\omega}$, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.

- Caratheodory-Hausdorff construction on metric spaces: let $\mathcal{A} \subseteq 2^{\omega}$, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.
- Define a set function

$$\mathcal{H}^h_\delta(\mathcal{A}) = \inf\left\{\sum_i h(\text{diam}(U_i)): \ \mathcal{A} \subseteq \bigcup_i U_i, \ \text{diam}(U_i) \leq \delta\right\}.$$

- Caratheodory-Hausdorff construction on metric spaces: let $\mathcal{A} \subseteq 2^{\omega}$, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.
- Define a set function

$$\mathcal{H}^h_\delta(\mathcal{A}) = \inf\left\{\sum_i h(\text{diam}(U_i)): \ \mathcal{A} \subseteq \bigcup_i U_i, \ \text{diam}(U_i) \leq \delta\right\}.$$

• Letting $\delta \rightarrow 0$ yields an (outer) measure.

- Caratheodory-Hausdorff construction on metric spaces: let $\mathcal{A} \subseteq 2^{\omega}$, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.
- Define a set function

$$\mathcal{H}^h_\delta(\mathcal{A}) = \inf\left\{\sum_i h(\text{diam}(U_i)): \ \mathcal{A} \subseteq \bigcup_i U_i, \ \text{diam}(U_i) \leq \delta\right\}.$$

- Letting $\delta \rightarrow 0$ yields an (outer) measure.
- The h-dimensional Hausdorff measure \mathcal{H}^h is defined as

$$\mathcal{H}^{h}(\mathcal{A}) = \lim_{\delta \to 0} \mathcal{H}^{h}_{\delta}(\mathcal{A})$$

• \mathcal{H}^{h} is Borel regular:

all Borel sets are measurable and for $\mathcal{A} \subseteq 2^{\omega}$ there is a Borel set $\mathcal{B} \supseteq \mathcal{A}$ such that $\mathcal{H}^{h}(\mathcal{B}) = \mathcal{H}^{h}(\mathcal{A})$.

- An obvious choice for h is h(x) = x^s for some s ≥ 0. For such h, denote the corresponding Hausdorff measure by H^s.

- An obvious choice for h is h(x) = x^s for some s ≥ 0. For such h, denote the corresponding Hausdorff measure by H^s.
- For s = 1, \mathcal{H}^1 is the usual Lebesgue measure λ on 2^{ω} .

- An obvious choice for h is h(x) = x^s for some s ≥ 0. For such h, denote the corresponding Hausdorff measure by H^s.
- For s = 1, \mathcal{H}^1 is the usual Lebesgue measure λ on 2^{ω} .
- $\ \ \, \hbox{\rm For} \ 0\leq s< t<\infty \ \hbox{\rm and} \ {\cal A}\subseteq 2^{\omega},$

 $\mathcal{H}^{s}(\mathcal{A}) < \infty \text{ implies } \mathcal{H}^{t}(\mathcal{A}) = 0,$ $\mathcal{H}^{t}(\mathcal{A}) > 0 \text{ implies } \mathcal{H}^{s}(\mathcal{A}) = \infty.$

Hausdorff dimension

The situation is depicted in the following graph:

Hausdorff dimension

The situation is depicted in the following graph:

• The Hausdorff dimension of \mathcal{A} is

$$\begin{split} \text{dim}_{\mathsf{H}}(\mathcal{A}) &= \inf\{s \geq \mathbf{0} : \ \mathcal{H}^{s}(\mathcal{A}) = \mathbf{0}\} \\ &= \sup\{t \geq \mathbf{0} : \ \mathcal{H}^{t}(\mathcal{A}) = \infty\} \end{split}$$

■ Lebesgue measure: $\lambda(A) > 0$ implies dim_H(A) = 1.

- Lebesgue measure: $\lambda(\mathcal{A}) > 0$ implies dim_H($\mathcal{A}) = 1$.
- Monotonicity: $\mathcal{A} \subseteq \mathcal{B}$ implies dim_H(\mathcal{A}) ≤ dim_H(\mathcal{B}).

- Lebesgue measure: $\lambda(\mathcal{A}) > 0$ implies dim_H($\mathcal{A}) = 1$.
- Monotonicity: $\mathcal{A} \subseteq \mathcal{B}$ implies dim_H(\mathcal{A}) ≤ dim_H(\mathcal{B}).
- Countable Stability: If $A_1, A_2, ...$ is a sequence of classes then

$$\dim_{\mathsf{H}}(\bigcup \mathcal{A}_{\mathfrak{i}}) = \sup\{\dim_{\mathsf{H}}(\mathcal{A}_{\mathfrak{i}})\}.$$

(Implies that all countable sets have dimension 0.)

- Lebesgue measure: $\lambda(\mathcal{A}) > 0$ implies dim_H($\mathcal{A}) = 1$.
- Monotonicity: $\mathcal{A} \subseteq \mathcal{B}$ implies $\dim_{H}(\mathcal{A}) \leq \dim_{H}(\mathcal{B})$.
- Countable Stability: If $A_1, A_2, ...$ is a sequence of classes then

$$\dim_{\mathsf{H}}(\bigcup \mathcal{A}_{\mathfrak{i}}) = \sup\{\dim_{\mathsf{H}}(\mathcal{A}_{\mathfrak{i}})\}.$$

(Implies that all countable sets have dimension 0.)

• Geometric transformations: If $f: 2^{\omega} \to 2^{\omega}$ is Hölder continuous, i.e. $d(f(\xi), f(\omega)) \le cd(\xi, \omega)^{\alpha}$ for $c, \alpha > 0$, then

 $dim_{H}\,f(\mathcal{A})\leq (1/\alpha)\,dim_{H}(\mathcal{A}).$

Effective Hausdorff measure

Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.

Effective Hausdorff measure

- Introduce effective coverings and define the notion of effective H^s-measure 0.
- (Let s ≥ 0 be rational.) A ⊆ 2^w is Σ₁-H^s null,
 Σ₁⁰-H^s(A) = 0, if there is a recursive sequence (C_n) of r.e. sets such that for each n,

$$\mathcal{A} \subseteq \bigcup_{w \in C_n} [w]$$
 and $\sum_{w \in C_n} 2^{-|w|s} < 2^{-n}$.

Effective Hausdorff Dimension

Definition of effective Hausdorff dimension is straightforward:

 $dim_{H}^{1}(\mathcal{A}) = \inf\{s \geq 0: \Sigma_{1}^{0} \text{-} \mathcal{H}^{s}(\mathcal{A}) = 0\}.$

Effective Hausdorff Dimension

Definition of effective Hausdorff dimension is straightforward:

 $dim_{H}^{1}(\mathcal{A}) = \inf\{s \geq 0: \Sigma_{1}^{0} - \mathcal{H}^{s}(\mathcal{A}) = 0\}.$

Countable stability takes a particularly nice form:

$$\dim_{H}^{1}(\mathcal{A}) = \sup_{\xi \in \mathcal{A}} \dim_{H}^{1}(\xi).$$

Some Examples

■ Random sequences: ξ Martin-Löf random implies that $\Sigma_1^0 - \mathcal{H}^1(\xi) \neq 0.$ Hence dim¹_H(ξ) = 1.

Some Examples

- Random sequences: ξ Martin-Löf random implies that $\Sigma_1^0 \mathcal{H}^1(\xi) \neq 0$. Hence dim_H¹(ξ) = 1.
- **Solution Cantor-like sequences:** ξ random, define

$$\widehat{\xi} = \xi_0 0 \xi_1 0 \xi_2 0 \dots$$

Then dim_H¹($\hat{\xi}$) = 1/2.

Some Examples

- Random sequences: ξ Martin-Löf random implies that Σ₁⁰-H¹(ξ) ≠ 0. Hence dim_H¹(ξ) = 1.
- **Solution Cantor-like sequences**: ξ random, define

$$\widehat{\xi} = \xi_0 0 \xi_1 0 \xi_2 0 \dots$$

Then dim_H¹($\widehat{\xi}$) = 1/2.

• Limiting frequency: Let v be a $(\beta, 1 - \beta)$ -Bernoulli measure ($0 < \beta < 1$ rational). Then for any v-random sequence,

$$\dim_{\mathrm{H}}^{1}(\xi) = \mathrm{H}(\beta),$$

with $H(\beta) = -[\beta \log(\beta) + (1 - \beta) \log(1 - \beta)]$.

'Main Theorem' of Effective Dimension

Kolmogorov complexity: For a string w, H(w) denotes the length of the shortest program, such that w is computed from that program by a fixed universal prefix free Turing machine.

'Main Theorem' of Effective Dimension

- Kolmogorov complexity: For a string w, H(w) denotes the length of the shortest program, such that w is computed from that program by a fixed universal prefix free Turing machine.
- Theorem: [Ryabko, Staiger, Cai and Hartmanis, Lutz, Tadaki, Mayordomo] For any sequence $\xi \in 2^{\omega}$ it holds that

$$\dim_{\mathrm{H}}^{1}(\xi) = \liminf_{n \to \infty} \frac{\mathrm{H}(\xi \upharpoonright n)}{n}.$$

Perfect Subsets

Cantor-Bendixson Theorem: Every uncountable closed class A ⊆ 2^w contains a perfect subset, i.e. a homeomorphic copy of 2^w.

Perfect Subsets

- Cantor-Bendixson Theorem: Every uncountable closed class A ⊆ 2^w contains a perfect subset, i.e. a homeomorphic copy of 2^w.
- Gacs, Kucera: Effective Version every Π⁰₁ class of positive Lebesgue measure can be mapped effectively onto 2^ω (by a process).

Perfect Subsets

- Cantor-Bendixson Theorem: Every uncountable closed class A ⊆ 2^ω contains a perfect subset, i.e. a homeomorphic copy of 2^ω.
- Gacs, Kucera: Effective Version every Π⁰₁ class of positive Lebesgue measure can be mapped effectively onto 2^ω (by a process).
- Corollary: Every sequence is Turing reducible to a random one.

Effective Processes

• A function $\phi: 2^{<\omega} \to 2^{<\omega}$ is called monotone, if

 $v \sqsubseteq w$ implies $\phi(v) \sqsubseteq \phi(w)$.

Monotone functions induce mappings $\Phi: 2^{\omega} \to 2^{<\omega} \cup 2^{\omega}$.

Effective Processes

• A function $\phi: 2^{<\omega} \to 2^{<\omega}$ is called monotone, if

 $v \sqsubseteq w$ implies $\phi(v) \sqsubseteq \phi(w)$.

Monotone functions induce mappings $\Phi: 2^{\omega} \to 2^{<\omega} \cup 2^{\omega}$.

If
 is induced by a computable mapping, it is called a process.

Effective Processes

• A function $\phi: 2^{<\omega} \to 2^{<\omega}$ is called monotone, if

 $\nu \sqsubseteq w$ implies $\phi(\nu) \sqsubseteq \phi(w)$.

Monotone functions induce mappings $\Phi: 2^{\omega} \to 2^{<\omega} \cup 2^{\omega}$.

- If
 is induced by a computable mapping, it is called a process.
- If $\Phi(A) = B$ via a process Φ , then $B \leq_T A$.

Generalized Reducibility Theorem

• A monotone mapping $\phi : 2^{<\omega} \to 2^{<\omega}$ is weakly Hölder or α -expansive, $\alpha > 0$, if for all $\omega \in \text{dom}(\Phi)$,

$$\liminf_{n\to\infty}\frac{|\phi(w\restriction n)|}{n}\geq\alpha.$$

Generalized Reducibility Theorem

• A monotone mapping $\phi : 2^{<\omega} \to 2^{<\omega}$ is weakly Hölder or α -expansive, $\alpha > 0$, if for all $\omega \in \text{dom}(\Phi)$,

$$\liminf_{n\to\infty}\frac{|\phi(w\restriction n)|}{n}\geq\alpha.$$

Theorem: Every Π⁰₁ class A of positive dimension can be mapped onto 2^ω by a computable, weakly Hölder process.

Generalized Reducibility Theorem

• A monotone mapping $\phi : 2^{<\omega} \to 2^{<\omega}$ is weakly Hölder or α -expansive, $\alpha > 0$, if for all $\omega \in \text{dom}(\Phi)$,

$$\liminf_{n\to\infty}\frac{|\phi(w\restriction n)|}{n}\geq\alpha.$$

- Theorem: Every Π⁰₁ class A of positive dimension can be mapped onto 2^ω by a computable, weakly Hölder process.
- With some effort, this can be generalized to all Π⁰₁ classes A for which exists a recursive h such that H^h(A) > 0.

Basic ingredient in the Gacs-Kucera proof:
 If \u03c0(\u03c0) > 2^{-n}, then there must exists \u03c0, \u03c0 < \u03c0 \u03c0 < 2^\u03c0 such that d(\u03c0, \u03c0) > 2^{n-1}.

- Basic ingredient in the Gacs-Kucera proof:
 If $\lambda(\mathcal{A}) > 2^{-n}$, then there must exists $\xi, \omega \in 2^{\omega}$ such that $d(\xi, \omega) \ge 2^{n-1}$.
- Theorem: If A is Π⁰₁, and if A contains at least one random sequence, then one can effectively find ε > 0 such that λ(A) > ε.

- Basic ingredient in the Gacs-Kucera proof:
 If $\lambda(\mathcal{A}) > 2^{-n}$, then there must exists $\xi, \omega \in 2^{\omega}$ such that $d(\xi, \omega) \ge 2^{n-1}$.
- Theorem: If A is Π⁰₁, and if A contains at least one random sequence, then one can effectively find ε > 0 such that λ(A) > ε.
- Need: Computable measure 'close' to uniform (Lebesgue measure) which makes A 'look big'.

- Basic ingredient in the Gacs-Kucera proof:
 If $\lambda(\mathcal{A}) > 2^{-n}$, then there must exists $\xi, \omega \in 2^{\omega}$ such that $d(\xi, \omega) \ge 2^{n-1}$.
- Theorem: If A is Π⁰₁, and if A contains at least one random sequence, then one can effectively find ε > 0 such that λ(A) > ε.
- Need: Computable measure 'close' to uniform (Lebesgue measure) which makes A 'look big'.
- If $\dim_{H}(\mathcal{A}) > s$, then \mathcal{A} is not \mathcal{H}^{s} -null.

- Basic ingredient in the Gacs-Kucera proof:
 If $\lambda(\mathcal{A}) > 2^{-n}$, then there must exists $\xi, \omega \in 2^{\omega}$ such that $d(\xi, \omega) \geq 2^{n-1}$.
- Theorem: If \mathcal{A} is Π_1^0 , and if \mathcal{A} contains at least one random sequence, then one can effectively find $\varepsilon > 0$ such that $\lambda(\mathcal{A}) > \varepsilon$.
- Need: Computable measure 'close' to uniform (Lebesgue measure) which makes A 'look big'.
- If $\dim_{H}(\mathcal{A}) > s$, then \mathcal{A} is not \mathcal{H}^{s} -null.
- But for 0 < s < 1, \mathcal{H}^s is not a probability measure: $\mathcal{H}^s(2^\omega) = \infty.$

Frostman's Lemma

In the classical setting, such a measure exists if \mathcal{A} is Borel.

Frostman's Lemma

- In the classical setting, such a measure exists if \mathcal{A} is Borel.
- Frostman's Lemma: Let $\mathcal{B} \subseteq 2^{\omega}$ be Borel. Then $\mathcal{H}^{s}(\mathcal{B}) > 0$ if and only if there exists a Radon probability measure μ with compact support contained in \mathcal{A} such that

 $(\forall w \in 2^{<\omega}) \ [\mu[w] \le 2^{-|w|s}].$

An Effective Version

• For Π_1^0 classes, Frostman's Lemma can be effectivized.

An Effective Version

- For Π_1^0 classes, Frostman's Lemma can be effectivized.
- Theorem: Let $\mathcal{A} \subseteq 2^{\omega}$ be Π_1^0 . Then $\mathcal{H}^s(\mathcal{A}) > 0$ if and only if there exists a recursive probability measure μ such that $\mu(\mathcal{A}) > 0$ and

$$(\forall w \in 2^{<\omega}) \ [\mu[w] \le 2^{-|w|s}].$$

The last theorem suggests the following question: Is every sequence of positive dimension random with respect to some computable probability measure?

- The last theorem suggests the following question: Is every sequence of positive dimension random with respect to some computable probability measure?
- Application: Hausdorff dimension of Turing lower spans.

- The last theorem suggests the following question: Is every sequence of positive dimension random with respect to some computable probability measure?
- Application: Hausdorff dimension of Turing lower spans.
- Problem: Do there exist Turing lower spans (degrees) of non-integral dimension?

- The last theorem suggests the following question: Is every sequence of positive dimension random with respect to some computable probability measure?
- Application: Hausdorff dimension of Turing lower spans.
- Problem: Do there exist Turing lower spans (degrees) of non-integral dimension?
- Theorem: [Levin] Every sequence which is random relative to some computable measure is Turing equivalent to a Martin-Löf random sequence.

- The last theorem suggests the following question: Is every sequence of positive dimension random with respect to some computable probability measure?
- Application: Hausdorff dimension of Turing lower spans.
- Problem: Do there exist Turing lower spans (degrees) of non-integral dimension?
- Theorem: [Levin] Every sequence which is random relative to some computable measure is Turing equivalent to a Martin-Löf random sequence.
- So, a positive answer to the first question would imply that there are no such spans.

Call a sequence improper [Levin-Zvonkin] if it is not random relative to any computable measure.

- Call a sequence improper [Levin-Zvonkin] if it is not random relative to any computable measure.
- Classical results: There exists a universal measure zero class Z ⊆ 2^w (a subset of 2^w that does not host a non-atomic finite Borel measure) of positive Hausdorff dimension. [Grzegorek, Fremlin, Zindulka]

- Call a sequence improper [Levin-Zvonkin] if it is not random relative to any computable measure.
- Classical results: There exists a universal measure zero class Z ⊆ 2^w (a subset of 2^w that does not host a non-atomic finite Borel measure) of positive Hausdorff dimension. [Grzegorek, Fremlin, Zindulka]
- Theorem: [Muchnik] Every 1-generic sequence is improper.

- Call a sequence improper [Levin-Zvonkin] if it is not random relative to any computable measure.
- Classical results: There exists a universal measure zero class Z ⊆ 2^w (a subset of 2^w that does not host a non-atomic finite Borel measure) of positive Hausdorff dimension. [Grzegorek, Fremlin, Zindulka]
- Theorem: [Muchnik] Every 1-generic sequence is improper.
- Theorem: There exists an improper sequence of dimension 1.

- Call a sequence improper [Levin-Zvonkin] if it is not random relative to any computable measure.
- Classical results: There exists a universal measure zero class Z ⊆ 2^w (a subset of 2^w that does not host a non-atomic finite Borel measure) of positive Hausdorff dimension. [Grzegorek, Fremlin, Zindulka]
- Theorem: [Muchnik] Every 1-generic sequence is improper.
- Theorem: There exists an improper sequence of dimension 1.
- The proof uses a weak Lipschitz join, which means that one sequence is inserted into another at very distant points. (The corresponding monotone mapping is bi-Hölder for every α > 1.)

How Much Randomness is There?

In spite of the previous result, each sequence of positive dimension might still compute a Martin-Löf random sequence or (weaker) a sequence of dimension 1 or (still weaker) sequences of dimension arbitrarily close to 1.

How Much Randomness is There?

- In spite of the previous result, each sequence of positive dimension might still compute a Martin-Löf random sequence or (weaker) a sequence of dimension 1 or (still weaker) sequences of dimension arbitrarily close to 1.
- It is an area of intensive research in complexity theory how to extract perfect (uniform) randomness from a weakly random source.

How Much Randomness is There?

- In spite of the previous result, each sequence of positive dimension might still compute a Martin-Löf random sequence or (weaker) a sequence of dimension 1 or (still weaker) sequences of dimension arbitrarily close to 1.
- It is an area of intensive research in complexity theory how to extract perfect (uniform) randomness from a weakly random source.
- It is not clear to what extend results are helpful in our setting.