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Hausdorff Measures

Caratheodory-Hausdorff construction on metric spaces:
let A ⊆ 2ω, h : R → R a monotone, increasing,
continous on the right function with h(0) = 0, and let
δ > 0.
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Hausdorff Measures

Caratheodory-Hausdorff construction on metric spaces:
let A ⊆ 2ω, h : R → R a monotone, increasing,
continous on the right function with h(0) = 0, and let
δ > 0.

Define a set function

Hh
δ (A) = inf

{
∑

i

h(diam(Ui)) : A ⊆
⋃

i

Ui, diam(Ui) ≤ δ

}

.
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let A ⊆ 2ω, h : R → R a monotone, increasing,
continous on the right function with h(0) = 0, and let
δ > 0.

Define a set function

Hh
δ (A) = inf

{
∑

i

h(diam(Ui)) : A ⊆
⋃

i

Ui, diam(Ui) ≤ δ

}

.

Letting δ → 0 yields an (outer) measure.
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Hausdorff Measures

Caratheodory-Hausdorff construction on metric spaces:
let A ⊆ 2ω, h : R → R a monotone, increasing,
continous on the right function with h(0) = 0, and let
δ > 0.

Define a set function

Hh
δ (A) = inf

{
∑

i

h(diam(Ui)) : A ⊆
⋃

i

Ui, diam(Ui) ≤ δ

}

.

Letting δ → 0 yields an (outer) measure.

The h-dimensional Hausdorff measure Hh is defined as

Hh(A) = lim
δ→0

Hh
δ (A)
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Properties of Hausdorff Measures

Hh is Borel regular:
all Borel sets are measurable and for A ⊆ 2ω there is a
Borel set B ⊇ A such that Hh(B) = Hh(A).
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Properties of Hausdorff Measures

Hh is Borel regular:
all Borel sets are measurable and for A ⊆ 2ω there is a
Borel set B ⊇ A such that Hh(B) = Hh(A).

An obvious choice for h is h(x) = xs for some s ≥ 0. For
such h, denote the corresponding Hausdorff measure
by Hs.
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Properties of Hausdorff Measures

Hh is Borel regular:
all Borel sets are measurable and for A ⊆ 2ω there is a
Borel set B ⊇ A such that Hh(B) = Hh(A).

An obvious choice for h is h(x) = xs for some s ≥ 0. For
such h, denote the corresponding Hausdorff measure
by Hs.

For s = 1, H1 is the usual Lebesgue measure λ on 2ω.

Hausdorff Measures and Perfect Subsets – p.3/18



Properties of Hausdorff Measures

Hh is Borel regular:
all Borel sets are measurable and for A ⊆ 2ω there is a
Borel set B ⊇ A such that Hh(B) = Hh(A).

An obvious choice for h is h(x) = xs for some s ≥ 0. For
such h, denote the corresponding Hausdorff measure
by Hs.

For s = 1, H1 is the usual Lebesgue measure λ on 2ω.

For 0 ≤ s < t < ∞ and A ⊆ 2ω,

Hs(A) < ∞ implies Ht(A) = 0,

Ht(A) > 0 implies Hs(A) = ∞.
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Hausdorff dimension

The situation is depicted in the following graph:
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Hausdorff dimension

The situation is depicted in the following graph:

The Hausdorff dimension of A is

dimH(A) = inf{s ≥ 0 : Hs(A) = 0}

= sup{t ≥ 0 : Ht(A) = ∞}
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Properties of Hausdorff Dimension

Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.
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Properties of Hausdorff Dimension

Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.

Monotonicity: A ⊆ B implies dimH(A) ≤ dimH(B).
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Properties of Hausdorff Dimension

Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.

Monotonicity: A ⊆ B implies dimH(A) ≤ dimH(B).

Countable Stability: If A1,A2, . . . is a sequence of
classes then

dimH(
⋃

Ai) = sup{dimH(Ai)}.

(Implies that all countable sets have dimension 0.)
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Properties of Hausdorff Dimension

Lebesgue measure: λ(A) > 0 implies dimH(A) = 1.

Monotonicity: A ⊆ B implies dimH(A) ≤ dimH(B).

Countable Stability: If A1,A2, . . . is a sequence of
classes then

dimH(
⋃

Ai) = sup{dimH(Ai)}.

(Implies that all countable sets have dimension 0.)

Geometric transformations: If f : 2ω → 2ω is Hölder
continuous, i.e. d(f(ξ), f(ω)) ≤ cd(ξ,ω)α for c, α > 0,
then

dimH f(A) ≤ (1/α) dimH(A).
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Effective Hausdorff measure

Introduce effective coverings and define the notion of
effective Hs-measure 0.
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Effective Hausdorff measure

Introduce effective coverings and define the notion of
effective Hs-measure 0.

(Let s ≥ 0 be rational.) A ⊆ 2ω is Σ1-Hs null,
Σ0

1-Hs(A) = 0, if there is a recursive sequence (Cn) of
r.e. sets such that for each n,

A ⊆
⋃

w∈Cn

[w] and
∑

w∈Cn

2−|w|s < 2−n.

Hausdorff Measures and Perfect Subsets – p.6/18



Effective Hausdorff Dimension

Definition of effective Hausdorff dimension is
straightforward:

dim1
H(A) = inf{s ≥ 0 : Σ0

1-Hs(A) = 0}.
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Effective Hausdorff Dimension

Definition of effective Hausdorff dimension is
straightforward:

dim1
H(A) = inf{s ≥ 0 : Σ0

1-Hs(A) = 0}.

Countable stability takes a particularly nice form:

dim1
H(A) = sup

ξ∈A
dim1

H(ξ).
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Some Examples

Random sequences: ξ Martin-Löf random implies that
Σ0

1-H1(ξ) 6= 0. Hence dim1
H(ξ) = 1.
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Some Examples

Random sequences: ξ Martin-Löf random implies that
Σ0

1-H1(ξ) 6= 0. Hence dim1
H(ξ) = 1.

Cantor-like sequences: ξ random, define

ξ̂ = ξ00ξ10ξ20 . . .

Then dim1
H(ξ̂) = 1/2.
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Some Examples

Random sequences: ξ Martin-Löf random implies that
Σ0

1-H1(ξ) 6= 0. Hence dim1
H(ξ) = 1.

Cantor-like sequences: ξ random, define

ξ̂ = ξ00ξ10ξ20 . . .

Then dim1
H(ξ̂) = 1/2.

Limiting frequency: Let ν be a (β, 1 − β)-Bernoulli
measure (0 < β < 1 rational). Then for any ν-random
sequence,

dim1
H(ξ) = H(β),

with H(β) = −[β log(β) + (1 − β) log(1 − β)].
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’Main Theorem’ of Effective Dimension

Kolmogorov complexity: For a string w, H(w) denotes
the length of the shortest program, such that w is
computed from that program by a fixed universal prefix
free Turing machine.
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’Main Theorem’ of Effective Dimension

Kolmogorov complexity: For a string w, H(w) denotes
the length of the shortest program, such that w is
computed from that program by a fixed universal prefix
free Turing machine.

Theorem: [Ryabko, Staiger, Cai and Hartmanis, Lutz,
Tadaki, Mayordomo]
For any sequence ξ ∈ 2ω it holds that

dim1
H(ξ) = lim inf

n→∞

H(ξ�n)

n
.
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Perfect Subsets

Cantor-Bendixson Theorem: Every uncountable closed
class A ⊆ 2ω contains a perfect subset, i.e. a
homeomorphic copy of 2ω.
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Perfect Subsets

Cantor-Bendixson Theorem: Every uncountable closed
class A ⊆ 2ω contains a perfect subset, i.e. a
homeomorphic copy of 2ω.

Gacs, Kucera: Effective Version – every Π0

1
class of

positive Lebesgue measure can be mapped effectively
onto 2ω (by a process).
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Perfect Subsets

Cantor-Bendixson Theorem: Every uncountable closed
class A ⊆ 2ω contains a perfect subset, i.e. a
homeomorphic copy of 2ω.

Gacs, Kucera: Effective Version – every Π0

1
class of

positive Lebesgue measure can be mapped effectively
onto 2ω (by a process).

Corollary: Every sequence is Turing reducible to a
random one.
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Effective Processes

A function φ : 2<ω → 2<ω is called monotone, if

v v w implies φ(v) v φ(w).

Monotone functions induce mappings
Φ : 2ω → 2<ω ∪ 2ω.
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Effective Processes

A function φ : 2<ω → 2<ω is called monotone, if

v v w implies φ(v) v φ(w).

Monotone functions induce mappings
Φ : 2ω → 2<ω ∪ 2ω.

If Φ is induced by a computable mapping, it is called a
process.
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Effective Processes

A function φ : 2<ω → 2<ω is called monotone, if

v v w implies φ(v) v φ(w).

Monotone functions induce mappings
Φ : 2ω → 2<ω ∪ 2ω.

If Φ is induced by a computable mapping, it is called a
process.

If Φ(A) = B via a process Φ, then B ≤T A.
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Generalized Reducibility Theorem

A monotone mapping φ : 2<ω → 2<ω is weakly Hölder
or α-expansive, α > 0, if for all ω ∈ dom(Φ),

lim inf
n→∞

|ϕ(ω�n)|

n
≥ α.
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Generalized Reducibility Theorem

A monotone mapping φ : 2<ω → 2<ω is weakly Hölder
or α-expansive, α > 0, if for all ω ∈ dom(Φ),

lim inf
n→∞

|ϕ(ω�n)|

n
≥ α.

Theorem: Every Π0
1 class A of positive dimension can

be mapped onto 2ω by a computable, weakly Hölder
process.
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Generalized Reducibility Theorem

A monotone mapping φ : 2<ω → 2<ω is weakly Hölder
or α-expansive, α > 0, if for all ω ∈ dom(Φ),

lim inf
n→∞

|ϕ(ω�n)|

n
≥ α.

Theorem: Every Π0
1 class A of positive dimension can

be mapped onto 2ω by a computable, weakly Hölder
process.

With some effort, this can be generalized to all Π0
1

classes A for which exists a recursive h such that
Hh(A) > 0.

Hausdorff Measures and Perfect Subsets – p.12/18



Hausdorff and Probability Measures

Basic ingredient in the Gacs-Kucera proof:
If λ(A) > 2−n, then there must exists ξ,ω ∈ 2ω such that
d(ξ,ω) ≥ 2n−1.

Hausdorff Measures and Perfect Subsets – p.13/18



Hausdorff and Probability Measures

Basic ingredient in the Gacs-Kucera proof:
If λ(A) > 2−n, then there must exists ξ,ω ∈ 2ω such that
d(ξ,ω) ≥ 2n−1.

Theorem: If A is Π0

1
, and if A contains at least one

random sequence, then one can effectively find ε > 0

such that λ(A) > ε.
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Hausdorff and Probability Measures

Basic ingredient in the Gacs-Kucera proof:
If λ(A) > 2−n, then there must exists ξ,ω ∈ 2ω such that
d(ξ,ω) ≥ 2n−1.

Theorem: If A is Π0

1
, and if A contains at least one

random sequence, then one can effectively find ε > 0

such that λ(A) > ε.

Need: Computable measure ’close’ to uniform (Lebesgue
measure) which makes A ’look big’.
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Hausdorff and Probability Measures

Basic ingredient in the Gacs-Kucera proof:
If λ(A) > 2−n, then there must exists ξ,ω ∈ 2ω such that
d(ξ,ω) ≥ 2n−1.

Theorem: If A is Π0

1
, and if A contains at least one

random sequence, then one can effectively find ε > 0

such that λ(A) > ε.

Need: Computable measure ’close’ to uniform (Lebesgue
measure) which makes A ’look big’.

If dimH(A) > s, then A is not Hs-null.
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Hausdorff and Probability Measures

Basic ingredient in the Gacs-Kucera proof:
If λ(A) > 2−n, then there must exists ξ,ω ∈ 2ω such that
d(ξ,ω) ≥ 2n−1.

Theorem: If A is Π0

1
, and if A contains at least one

random sequence, then one can effectively find ε > 0

such that λ(A) > ε.

Need: Computable measure ’close’ to uniform (Lebesgue
measure) which makes A ’look big’.

If dimH(A) > s, then A is not Hs-null.

But for 0 < s < 1, Hs is not a probability measure:
Hs(2ω) = ∞.

Hausdorff Measures and Perfect Subsets – p.13/18



Frostman’s Lemma

In the classical setting, such a measure exists if A is
Borel.
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Frostman’s Lemma

In the classical setting, such a measure exists if A is
Borel.

Frostman’s Lemma: Let B ⊆ 2ω be Borel. Then
Hs(B) > 0 if and only if there exists a Radon probability
measure µ with compact support contained in A such
that

(∀w ∈ 2<ω) [µ[w] ≤ 2−|w|s].
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An Effective Version

For Π0
1 classes, Frostman’s Lemma can be effectivized.
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An Effective Version

For Π0
1 classes, Frostman’s Lemma can be effectivized.

Theorem: Let A ⊆ 2ω be Π0
1. Then Hs(A) > 0 if and

only if there exists a recursive probability measure µ

such that µ(A) > 0 and

(∀w ∈ 2<ω) [µ[w] ≤ 2−|w|s].
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Dimension and Randomness

The last theorem suggests the following question: Is
every sequence of positive dimension random with
respect to some computable probability measure?
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Dimension and Randomness

The last theorem suggests the following question: Is
every sequence of positive dimension random with
respect to some computable probability measure?

Application: Hausdorff dimension of Turing lower spans.
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Dimension and Randomness

The last theorem suggests the following question: Is
every sequence of positive dimension random with
respect to some computable probability measure?

Application: Hausdorff dimension of Turing lower spans.

Problem: Do there exist Turing lower spans (degrees) of
non-integral dimension?
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Dimension and Randomness

The last theorem suggests the following question: Is
every sequence of positive dimension random with
respect to some computable probability measure?

Application: Hausdorff dimension of Turing lower spans.

Problem: Do there exist Turing lower spans (degrees) of
non-integral dimension?

Theorem: [Levin]
Every sequence which is random relative to some
computable measure is Turing equivalent to a
Martin-Löf random sequence.
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Dimension and Randomness

The last theorem suggests the following question: Is
every sequence of positive dimension random with
respect to some computable probability measure?

Application: Hausdorff dimension of Turing lower spans.

Problem: Do there exist Turing lower spans (degrees) of
non-integral dimension?

Theorem: [Levin]
Every sequence which is random relative to some
computable measure is Turing equivalent to a
Martin-Löf random sequence.

So, a positive answer to the first question would imply
that there are no such spans.
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Improper Sequences

Call a sequence improper [Levin-Zvonkin] if it is not
random relative to any computable measure.
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Improper Sequences

Call a sequence improper [Levin-Zvonkin] if it is not
random relative to any computable measure.

Classical results: There exists a universal measure zero
class Z ⊆ 2ω (a subset of 2ω that does not host a
non-atomic finite Borel measure) of positive Hausdorff
dimension. [Grzegorek, Fremlin, Zindulka]
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random relative to any computable measure.

Classical results: There exists a universal measure zero
class Z ⊆ 2ω (a subset of 2ω that does not host a
non-atomic finite Borel measure) of positive Hausdorff
dimension. [Grzegorek, Fremlin, Zindulka]

Theorem: [Muchnik]
Every 1-generic sequence is improper.
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Improper Sequences

Call a sequence improper [Levin-Zvonkin] if it is not
random relative to any computable measure.

Classical results: There exists a universal measure zero
class Z ⊆ 2ω (a subset of 2ω that does not host a
non-atomic finite Borel measure) of positive Hausdorff
dimension. [Grzegorek, Fremlin, Zindulka]

Theorem: [Muchnik]
Every 1-generic sequence is improper.

Theorem: There exists an improper sequence of
dimension 1.
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Improper Sequences

Call a sequence improper [Levin-Zvonkin] if it is not
random relative to any computable measure.

Classical results: There exists a universal measure zero
class Z ⊆ 2ω (a subset of 2ω that does not host a
non-atomic finite Borel measure) of positive Hausdorff
dimension. [Grzegorek, Fremlin, Zindulka]

Theorem: [Muchnik]
Every 1-generic sequence is improper.

Theorem: There exists an improper sequence of
dimension 1.

The proof uses a weak Lipschitz join, which means that
one sequence is inserted into another at very distant
points. (The corresponding monotone mapping is
bi-Hölder for every α > 1.)
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How Much Randomness is There?

In spite of the previous result, each sequence of
positive dimension might still compute a Martin-Löf
random sequence or (weaker) a sequence of dimension
1 or (still weaker) sequences of dimension arbitrarily
close to 1.
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How Much Randomness is There?

In spite of the previous result, each sequence of
positive dimension might still compute a Martin-Löf
random sequence or (weaker) a sequence of dimension
1 or (still weaker) sequences of dimension arbitrarily
close to 1.

It is an area of intensive research in complexity theory
how to extract perfect (uniform) randomness from a
weakly random source.
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How Much Randomness is There?

In spite of the previous result, each sequence of
positive dimension might still compute a Martin-Löf
random sequence or (weaker) a sequence of dimension
1 or (still weaker) sequences of dimension arbitrarily
close to 1.

It is an area of intensive research in complexity theory
how to extract perfect (uniform) randomness from a
weakly random source.

It is not clear to what extend results are helpful in our
setting.
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