Randomness and Definability Hierarchies

Jan Reimann, Penn State
March 4, 2017
joint work with T. Slaman

Question

- A lot of progress has been made in studying properties of random reals (Lebesgue or computable measures)
- Less clear: which reals in 2^{ω} are random with respect to some measure?
- How can we find a measure relative to which a given real is random?
- This talk:
randomness \perp presence of an internal definability structure

Randomness

- Suppose μ is a probability measure on 2^{ω}, and R_{μ} is a representation of μ. Suppose further that $Z \in 2^{\omega}$ and $n \geq 1$.
- An $\left(R_{\mu}, Z, n\right)$-test is a set $W \subseteq \omega \times 2^{<\omega}$ recursively enumerable in $\left(R_{\mu} \oplus Z\right)^{(n-1)}$ such that

$$
\sum_{\sigma \in W_{n}} \mu[\sigma] \leq 2^{-n}
$$

where $W_{n}=\{\sigma:(n, \sigma) \in W\}$

- A real X passes a test W if $X \notin \bigcap_{n} \bigcup_{\sigma \in W_{n}}[\sigma]$.
- A real X is $\left(R_{\mu}, Z, n\right)$-random if it passes all (R, Z, n)-tests.
- A real $X(\mu, Z, n)$-random if there exists a representation R_{μ} such that X is $\left(R_{\mu}, Z, n\right)$-random.

Continuous measures

- μ is continuous if $\mu\{X\}=0$ for all X.
- X is random for a continuous measure iff it is random for a dyadic continuous measure.
- This way we can avoid some representational issues.
- In the following, all measures are continuous dyadic.

Orthogonality (0)

Stair Trainer Lemma: Suppose Z is μ - n-random, $n \geq 2$. If
$Y \leq_{T} \mu^{(n-1)}$ and $Y \leq_{T} Z \oplus \mu$, then $Y \leq_{T} \mu$.
(Generalizes a result by Downey, Nies, Weber, and Yu)

- Suffiently random reals form a minimal pair with instances of the jump (relative to the measure).

Orthogonality (I)

Stair Trainer Technique: If $n \geq 2$, then for all $k \geq 0, \emptyset^{(k)}$ is not n-random with respect to a continuous measure.

- Suppose $\emptyset^{(k)}$ is μ - n-random for some μ. Then
- $\emptyset^{\prime} \leq_{T} \emptyset^{(k)}$ and $\emptyset^{\prime} \leq_{T} \mu^{\prime} \leq_{T} \mu^{(n-1)}$.
- By Lemma, \emptyset^{\prime} is recursive in μ.
- Apply argument inductively to $\emptyset^{(i)}, i \leq k$.

Orthogonality (II)

Stair Trainer Limit Technique: For $n \geq 3, \emptyset^{(\omega)}$ is not n-random with respect to a continuous measure.

- Assume for a contradiction that $0^{(\omega)}$ is μ-n-random for $n \geq 3$ and continuous μ.
- By the previous proof, $O^{(k)} \leq_{T} \mu$ for all k. By Enderton and Putnam, if X is a \leq_{T}-upper bound for $\left\{0^{(k)}: k \in \omega\right\}$, then $0^{(\omega)} \leq_{T} X^{\prime \prime}$.
- Therefore, $0^{(\omega)} \leq_{T} \mu^{\prime \prime}$, but since $n \geq 3$ and $0^{(\omega)}$ is μ - n-random, this is impossible.

Randomness vs structure

Two main points:

- Steps in the hierarchy are given by simple, uniformly arithmetic operations.
- One can pass from an upper bound to a uniform limit by an arithmetic operation.

Beyond arithemtic

Jensen's Master codes for the constructible universe provide a similarly stratified hierarchy of definability.

Goal: Show that randomness is equally incompatible with such codes.

The J-hiearchy

Cumulative hierarchy defined as

- $J_{0}=\emptyset$
- $J_{\alpha+1}=\operatorname{rud}\left(J_{\alpha}\right)$
- $J_{\lambda}=\bigcup_{\alpha<\lambda} J_{\alpha}$ for λ limit.
$\operatorname{rud}(X)$ is the closure of $X \cup\{X\}$ under rudimentary functions (primitive set recursion).

Properties

- Each J_{α} is transitive and amenable (model of a sufficiently large fragment of set theory).
- $\operatorname{rank}\left(J_{\alpha+1}\right)=\operatorname{rank}\left(J_{\alpha}\right)+\omega$.
- $L=\bigcup_{\alpha} J_{\alpha}$.
- The Σ_{n}-satisfaction relation over $J_{\alpha}, \models_{J_{\alpha}}^{\Sigma_{n}}$, is Σ_{n}-definable over J_{α}, uniformly in α.
- The mapping $\beta \mapsto J_{\beta}(\beta<\alpha)$ is Σ_{1}-definable over any J_{α}.
- There is a formula $\varphi_{\mathrm{V}=\mathrm{J}}$ such that for any transitive set M,

$$
M \models \varphi \mathrm{~V}=\mathrm{J} \Leftrightarrow \exists \alpha M=J_{\alpha} .
$$

Rudimentary functions

Every rudimentary function is a combination of the following nine functions:

1. $F_{0}(x, y)=\{x, y\}$,
2. $F_{1}(x, y)=x \backslash y$,
3. $F_{2}(x, y)=x \times y$,
4. $F_{3}(x, y)=\{(u, z, v): z \in x \wedge(u, v) \in y\}$,
5. $F_{4}(x, y)=\{(u, v, z): z \in x \wedge(u, v) \in y\}$,
6. $F_{5}(x, y)=\bigcup x$,
7. $F_{6}(x, y)=\operatorname{dom}(x)$,
8. $F_{7}(x, y)=\in \cap(x \times x)$,
9. $F_{8}(x, y)=\{\{x(z)\}: z \in y\}$.

S-operator

$$
S(X)=[X \cup\{X\}] \cup\left[\bigcup_{i=0}^{8} F_{i}[X \cup\{X\}]\right]
$$

This gives rise to a finer hierarchy:

- $S_{0}=\emptyset$,
- $S_{\alpha+1}=S\left(S_{\alpha}\right)$,
- $S_{\lambda}=\bigcup_{\alpha<\lambda} S_{\alpha}$ (λ limit).

Then

$$
J_{\alpha}=\bigcup_{\beta<\omega \alpha} S_{\beta}=S_{\omega \alpha}
$$

Projecta

Boolos \& Putnam: If $\mathcal{P}(\omega) \cap\left(L_{\alpha+1} \backslash L_{\alpha}\right) \neq \emptyset$, then there exists a surjection $f: \omega \rightarrow L_{\alpha}$ in $L_{\alpha+1}$.

Jensen extended and generalized this observation.

- For $n, \alpha>0$, the Σ_{n}-projectum ρ_{α}^{n} is equal to the least $\gamma \leq \alpha$ such that $\mathcal{P}(\omega \gamma) \cap\left(\Sigma_{n}\left(J_{\alpha}\right) \backslash J_{\alpha}\right) \neq \emptyset$.
- ρ_{α}^{n} is equal to the least $\delta \leq \alpha$ such that there exists a function f that is $\Sigma_{n}\left(J_{\alpha}\right)$-definable over J_{α} such that $f(D)=J_{\alpha}$ for some $D \subseteq \omega \delta$

Master codes

A Σ_{n} master code for J_{α} is a set $A \subseteq J_{\rho_{\alpha}^{n}}$ that is $\Sigma_{n}\left(J_{\alpha}\right)$, such that for any $m \geq 1$,

$$
\Sigma_{n+m}\left(J_{\alpha}\right) \cap \mathcal{P}\left(J_{\rho_{\alpha}^{n}}\right)=\Sigma_{m}\left(\left\langle J_{\rho_{\alpha}^{n}}, A\right\rangle\right) .
$$

A Σ_{n} master code does two things:

1. It "accelerates" definitions of new subsets of $J_{\rho_{\alpha}^{n}}$ by n quantifiers.
2. It replaces parameters from J_{α} in the definition of these new sets by parameters from $J_{\rho_{\alpha}^{n}}$ (and the use of A as an "oracle").

Standard codes

Jensen exhibited a uniform, canonical way to define master codes, by iterating Σ_{1}-definability.

$$
A_{\alpha}^{n+1}:=\left\{(i, x): i \in \omega \wedge x \in J_{\rho_{\alpha}^{n+1}} \wedge\left\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right\rangle \models \varphi_{i}\left(x, p_{\alpha}^{n+1}\right)\right\}
$$

We will call the structure $\left\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right\rangle$ the standard $\Sigma_{n} J$-structure for J_{α}.

From set theory to recursion theory

We want to apply the recursion theoretic "Stair" techniques to countable J-structures. We therefore have to code them as subsets of ω.

If the projectum ρ_{α}^{n} is equal to 1 , all "information" about the J-structure $\left\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right\rangle$ is contained in the standard code A_{α}^{n}, which is simply a real (or rather, a subset of V_{ω}).

These lend itself directly to recursion theoretic analysis (e.g. Boolos and Putnam [1968], Jockusch Simpson [1976], Hodes [1980]).

From set theory to recursion theory

The problem in our setting is that we want to uniformly work our way through arithmetic copies of J-structures even when the projectum is greater than 1.

For this purpose we have to code two objects, the sets J_{α} (which keep track of the basic set theoretic relations) and the standard codes over each J_{α}, which keep track of the definable objects quantifier by quantifier.

ω-copies

Let $X \subseteq \omega$. The relational structure induced by X is $\left\langle F_{X}, E_{X}\right\rangle$, where

$$
x E_{X} y \Leftrightarrow\langle x, y\rangle \in X
$$

and

$$
F_{X}=\operatorname{Field}\left(E_{X}\right)=\left\{x: \exists y\left(x E_{X} y \text { or } y E_{X} x\right) \text { for some } y\right\}
$$

We will look at structures $\langle X, M\rangle$, where X is a relational structure, and M is a subset of F_{X} (coding an additional predicate).

ω-copies

An ω-copy of a countable set-theoretic structure $\langle S, A\rangle, A \subseteq S$, is a pair $\langle X, M\rangle$ of subsets of ω such that the structure coded by X is extensional and there exists a surjection $\pi: S \rightarrow$ Field $\left(E_{X}\right)$ such that

$$
\begin{equation*}
\forall x, y \in S\left[x \in y \Longleftrightarrow \pi(x) E_{X} \pi(y)\right], \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\{\pi(x): x \in A\} \tag{2}
\end{equation*}
$$

If $\rho_{\alpha}^{n}=1$, then standard code can be seen directly as an ω-copy, which we will call the canonical copy.

Extracting information from copies

If $\langle X, M\rangle$ is an ω-copy of $\left\langle J_{\rho_{\alpha}^{n+1}}, A_{\alpha}^{n+1}\right\rangle$, then $(X \oplus M)^{(2)}$ computes ω-copies of

- $\left\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right\rangle,\left\langle J_{\rho_{\alpha}^{n-1}}, A_{\alpha}^{n-1}\right\rangle, \ldots$, and $\left\langle J_{\rho_{\alpha}^{0}}, A_{\alpha}^{0}\right\rangle=\left\langle J_{\alpha}, \varnothing\right\rangle=J_{\alpha}$,
- $S^{(n)}\left(J_{\beta}\right)$, for all $n \in \omega, \beta<\alpha$.

Defining copies

We can define ω-copies of new J-structures from ω-copies of given J-structures using suitable versions of the S-operator.

There exists a Π_{5}^{0}-definable function $\bar{S}(X)=Y$ such that, if X is an ω-copy of a countable set $U, \bar{S}(X)$ is an ω-copy of $S(U)$.

Putnam-Enderton analysis: If X is an ω-copy of J_{α} and $Z \geq_{T} \bar{S}^{(n)}(X)$ for all n, then $Z^{(5)}$ computes an ω-copy of $J_{\alpha+1}$.

Defining copies

We can also arithmetically define an ω-copies of the successor of a standard J-structure.

- Suppose $\langle X, M\rangle$ is an ω-copy of $\left\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n}\right\rangle$. Then there exists an ω-copy of $\left\langle J_{\rho_{\alpha}^{n+1}}, A_{\alpha}^{n+1}\right\rangle \Sigma_{d_{\models}^{(1)}}^{0}$-definable in $\langle X, M\rangle$.

Here $d_{\models}^{(1)}$ is the arithmetic complexity of the formula defining $\models^{\Sigma_{1}}$ for transitive, rud-closed structures.

Recognizing copies

Goal: show that the sequence of canonical copies of J-structures with projectum $=1$ in $L_{\beta_{n}}$, where β_{n} is the least ordinal such that $L_{\beta_{n}} \models$ ZFC $_{n}^{-}$, cannot be $G(n)$-random with respect to a continuous measure.

We will assume for a contradiction that such a copy, say $\langle X, M\rangle$, is random for a continuous measure μ.

Recognizing copies

Idea: look at the initial segment of ω-copies computable in (some fixed jump of) μ.

Since $\langle X, M\rangle$ is μ-random, it cannot be among those.
But we can "reach" $\langle X, M\rangle$ from the ω-copies of J_{α} 's computable in μ, by iterating arithmetic operations and taking uniform limits.

Then apply the Stair Trainer Technique.

Recognizing copies

Problem: we cannot arithmetically define the set of ω-copies of structures J_{α}. We can define a set of "pseudocopies", subsets of ω that behave in most respects like actual ω-copies, but that may code structures that are not well-founded.

Pseudocopies

A pseudocopy is defined through the following properties, which are arithmetically definable.

- The relation E_{X} is non-empty and extensional.
- X is rud-closed.
- The structure coded by X satisfies $\varphi_{V=J}$.
- X contains (a copy of) ω as a element.

Furthermore, we can also prescribe which power sets of ω exist:

$$
\exists y\left(y=\mathcal{P}^{(n)}(\omega)\right) \wedge \forall z\left(z \neq \mathcal{P}^{(n+1)}(\omega)\right)
$$

Such a pseudocopy is called an n-pseudocopy.

Comparing pseudocopies

We can also linearly order pseudocopies by comparing their internal J-structures.

- To check whether two pseudocopies appear to code the same structure, we compare their reals, sets of reals, etc., up to n, the largest existing power of ω.
- For two n-copies, we put $X \prec_{n} Y$ if there exists a J-segment in Y isomorphic to X.
- If comparability fails, we can arithmetically expose an ill-foundedness in one of the pseudocopies, by looking at the ordinal structure in each pseudocopy.

Result: a $\Sigma_{c_{n}}^{0}(Z)$-definable total preorder $\left(\mathcal{P C}_{n}^{*}(Z), \prec_{n}\right)$ of pseudocopies recursive in Z.

Canonical copies are not random

Theorem: Suppose $N \geq 0, \alpha<\beta_{N}$, and for some $k>0, \rho_{\alpha}^{k}=1$. Then the canonical copy of the standard J-structure $\left\langle J_{\rho_{\alpha}^{k}}, A_{\alpha}^{k}\right\rangle$ is not $G(N)$-random with respect to any continuous measure.

$$
\left[G(N)=6^{N+2} \cdot\left(d_{\models}^{(1)}+2 N+42\right)\right]
$$

- Assume for a contradiction the canonical copy $\langle X, M\rangle$ is $G(N)$-random for continuous μ.
- Any pseudocopy in a well-founded initial segment of $\mathcal{P} \mathcal{C}_{N}^{*}(\mu)$ is a well-founded pseudocopy, and hence a true arithmetic copy of some J-structure.
- μ can arithmetically recognize the longest well-founded initial segment of \prec_{N}.

Recognizing well-foundedness

Lemma: Let $j \geq 0$. Suppose μ is a continuous measure and \prec is a linear order on a subset of ω such that the relation \prec and the field of \prec are both recursive in $\mu^{(j)}$. Suppose further X is
$(j+5)$-random relative to μ, and $I \subseteq \omega$ is the longest well-founded initial segment of \prec. If I is recursive in $(X \oplus \mu)^{(j)}$, then I is recursive in $\mu^{(j+4)}$.

Proof (continued)

- As $\langle X, M\rangle$ is sufficiently random, we can build up a chain of pseudocopies computable from μ, using the stair trainer technique.
- One complication: μ and $\langle X, M\rangle$ have different copies, so we need to translate between them, which adds complexity at every step.
- This is offset by looking at the projecta, and recycling copies we have built at previous stages.

