Randomness and Definability Hierarchies

Jan Reimann, Penn State March 4, 2017

joint work with T. Slaman

- A lot of progress has been made in studying properties of random reals (Lebesgue or computable measures)
- Less clear: which reals in 2^{ω} are random with respect to *some* measure?
- How can we *find* a measure relative to which a given real is random?
- This talk:

randomness \perp presence of an internal definability structure

Randomness

- Suppose μ is a probability measure on 2^ω, and R_μ is a representation of μ. Suppose further that Z ∈ 2^ω and n ≥ 1.
- An (R_μ, Z, n)-test is a set W ⊆ ω × 2^{<ω} recursively enumerable in (R_μ ⊕ Z)⁽ⁿ⁻¹⁾ such that

$$\sum_{\sigma \in W_n} \mu[\sigma] \le 2^{-n},$$

where $W_n = \{ \sigma : (n, \sigma) \in W \}$

- A real X passes a test W if $X \notin \bigcap_n \bigcup_{\sigma \in W_n} [\sigma]$.
- A real X is (R_{μ}, Z, n) -random if it passes all (R, Z, n)-tests.
- A real X (μ, Z, n)-random if there exists a representation R_μ such that X is (R_μ, Z, n)-random.

- μ is *continuous* if μ {*X*} = 0 for all *X*.
- X is random for a continuous measure iff it is random for a *dyadic* continuous measure.
- This way we can avoid some representational issues.
- In the following, all measures are continuous dyadic.

Stair Trainer Lemma: Suppose *Z* is μ -*n*-random, $n \ge 2$. If $Y \le_T \mu^{(n-1)}$ and $Y \le_T Z \oplus \mu$, then $Y \le_T \mu$.

(Generalizes a result by Downey, Nies, Weber, and Yu)

• Sufficiently random reals form a minimal pair with instances of the jump (relative to the measure).

Stair Trainer Technique: If $n \ge 2$, then for all $k \ge 0$, $\emptyset^{(k)}$ is not *n*-random with respect to a continuous measure.

- Suppose $\emptyset^{(k)}$ is μ -*n*-random for some μ . Then
- $\emptyset' \leq_T \emptyset^{(k)}$ and $\emptyset' \leq_T \mu' \leq_T \mu^{(n-1)}$.
- By Lemma, \emptyset' is recursive in μ .
- Apply argument inductively to $\emptyset^{(i)}$, $i \leq k$.

Stair Trainer Limit Technique: For $n \ge 3$, $\emptyset^{(\omega)}$ is not *n*-random with respect to a continuous measure.

- Assume for a contradiction that 0^(ω) is μ-n-random for n ≥ 3 and continuous μ.
- By the previous proof, 0^(k) ≤_T µ for all k. By Enderton and Putnam, if X is a ≤_T-upper bound for {0^(k): k ∈ ω}, then 0^(ω) ≤_T X".
- Therefore, $0^{(\omega)} \leq_T \mu''$, but since $n \geq 3$ and $0^{(\omega)}$ is μ -*n*-random, this is impossible.

Two main points:

- Steps in the hierarchy are given by simple, uniformly arithmetic operations.
- One can pass from an upper bound to a uniform limit by an arithmetic operation.

Jensen's Master codes for the constructible universe provide a similarly stratified hierarchy of definability.

Goal: Show that randomness is equally incompatible with such codes.

Cumulative hierarchy defined as

- $J_0 = \emptyset$
- $J_{\alpha+1} = \operatorname{rud}(J_{\alpha})$
- $J_{\lambda} = \bigcup_{\alpha < \lambda} J_{\alpha}$ for λ limit.

rud(X) is the closure of $X \cup \{X\}$ under *rudimentary* functions (primitive set recursion).

- Each J_{α} is transitive and *amenable* (model of a sufficiently large fragment of set theory).
- $\operatorname{rank}(J_{\alpha+1}) = \operatorname{rank}(J_{\alpha}) + \omega$.
- $L = \bigcup_{\alpha} J_{\alpha}.$
- The Σ_n-satisfaction relation over J_α, |=^{Σ_n}_{J_α}, is Σ_n-definable over J_α, uniformly in α.
- The mapping $\beta \mapsto J_{\beta}$ ($\beta < \alpha$) is Σ_1 -definable over any J_{α} .
- There is a formula $\varphi_{V=J}$ such that for any transitive set M,

$$M\models\varphi_{\mathsf{V}=\mathsf{J}} \Leftrightarrow \exists \alpha \ M=J_{\alpha}.$$

Rudimentary functions

Every rudimentary function is a combination of the following nine functions:

1. $F_0(x, y) = \{x, y\},\$ 2. $F_1(x, y) = x \setminus y$. 3. $F_2(x, y) = x \times y$, 4. $F_3(x, y) = \{(u, z, v) : z \in x \land (u, v) \in y\},\$ 5. $F_4(x, y) = \{(u, v, z) : z \in x \land (u, v) \in y\},\$ 6. $F_5(x, y) = \bigcup x$, 7. $F_6(x, y) = dom(x)$, 8. $F_7(x, y) = \in \cap (x \times x)$. 9. $F_8(x, y) = \{\{x(z)\} : z \in y\}.$

$$S(X) = [X \cup \{X\}] \cup \left[\bigcup_{i=0}^{8} F_i[X \cup \{X\}]\right]$$

This gives rise to a finer hierarchy:

- $S_0 = \emptyset$,
- $S_{\alpha+1} = S(S_{\alpha})$,
- $S_{\lambda} = \bigcup_{\alpha < \lambda} S_{\alpha}$ (λ limit).

Then

$$J_{\alpha} = \bigcup_{eta < \omega lpha} S_{eta} = S_{\omega lpha}.$$

Boolos & Putnam: If $\mathcal{P}(\omega) \cap (L_{\alpha+1} \setminus L_{\alpha}) \neq \emptyset$, then there exists a surjection $f : \omega \to L_{\alpha}$ in $L_{\alpha+1}$.

Jensen extended and generalized this observation.

- For n, α > 0, the Σ_n-projectum ρⁿ_α is equal to the least γ ≤ α such that P(ωγ) ∩ (Σ_n(J_α) \ J_α) ≠ Ø.
- ρ_{α}^{n} is equal to the least $\delta \leq \alpha$ such that there exists a function f that is $\Sigma_{n}(J_{\alpha})$ -definable over J_{α} such that $f(D) = J_{\alpha}$ for some $D \subseteq \omega\delta$

A Σ_n master code for J_α is a set $A \subseteq J_{\rho_\alpha^n}$ that is $\Sigma_n(J_\alpha)$, such that for any $m \ge 1$,

$$\Sigma_{n+m}(J_{\alpha}) \cap \mathcal{P}(J_{\rho_{\alpha}^{n}}) = \Sigma_{m}(\langle J_{\rho_{\alpha}^{n}}, A \rangle).$$

- A Σ_n master code does two things:
 - 1. It "accelerates" definitions of new subsets of $J_{\rho_{\alpha}^n}$ by n quantifiers.
 - 2. It replaces parameters from J_{α} in the definition of these new sets by parameters from $J_{\rho_{\alpha}^{n}}$ (and the use of A as an "oracle").

Jensen exhibited a uniform, canonical way to define master codes, by iterating $\Sigma_1\text{-definability}.$

$$A^{n+1}_{\alpha} := \{ (i,x) \colon i \in \omega \land x \in J_{\rho^{n+1}_{\alpha}} \land \langle J_{\rho^{n}_{\alpha}}, A^{n}_{\alpha} \rangle \models \varphi_{i}(x, p^{n+1}_{\alpha}) \},$$

We will call the structure $\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n} \rangle$ the standard Σ_{n} *J*-structure for J_{α} .

We want to apply the recursion theoretic "Stair" techniques to countable *J*-structures. We therefore have to code them as subsets of ω .

If the projectum ρ_{α}^{n} is equal to 1, all "information" about the *J*-structure $\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n} \rangle$ is contained in the standard code A_{α}^{n} , which is simply a real (or rather, a subset of V_{ω}).

These lend itself directly to recursion theoretic analysis (e.g. Boolos and Putnam [1968], Jockusch Simpson [1976], Hodes [1980]).

The problem in our setting is that we want to uniformly work our way through arithmetic copies of J-structures even when the projectum is greater than 1.

For this purpose we have to code **two objects**, the sets J_{α} (which keep track of the basic set theoretic relations) and the standard codes over each J_{α} , which keep track of the definable objects quantifier by quantifier.

Let $X \subseteq \omega$. The *relational structure* induced by X is $\langle F_X, E_X \rangle$, where

$$xE_Xy \Leftrightarrow \langle x,y \rangle \in X$$

and

$$F_X = \operatorname{Field}(E_X) = \{x \colon \exists y \ (xE_Xy \text{ or } yE_Xx) \text{ for some } y\}.$$

We will look at structures $\langle X, M \rangle$, where X is a relational structure, and M is a subset of F_X (coding an additional predicate).

An ω -copy of a countable set-theoretic structure $\langle S, A \rangle$, $A \subseteq S$, is a pair $\langle X, M \rangle$ of subsets of ω such that the structure coded by Xis extensional and there exists a surjection $\pi : S \to \text{Field}(E_X)$ such that

$$\forall x, y \in S [x \in y \iff \pi(x) E_X \pi(y)], \tag{1}$$

and

$$M = \{\pi(x) \colon x \in A\}.$$
 (2)

If $\rho_{\alpha}^{n} = 1$, then standard code can be seen directly as an ω -copy, which we will call the *canonical copy*.

If $\langle X, M \rangle$ is an ω -copy of $\langle J_{\rho_{\alpha}^{n+1}}, A_{\alpha}^{n+1} \rangle$, then $(X \oplus M)^{(2)}$ computes ω -copies of

•
$$\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n} \rangle, \langle J_{\rho_{\alpha}^{n-1}}, A_{\alpha}^{n-1} \rangle, \dots, \text{ and } \langle J_{\rho_{\alpha}^{0}}, A_{\alpha}^{0} \rangle = \langle J_{\alpha}, \varnothing \rangle = J_{\alpha},$$

•
$$S^{(n)}(J_{\beta})$$
, for all $n \in \omega$, $\beta < \alpha$.

We can define ω -copies of new *J*-structures from ω -copies of given *J*-structures using suitable versions of the *S*-operator.

There exists a Π_5^0 -definable function $\overline{S}(X) = Y$ such that, if X is an ω -copy of a countable set U, $\overline{S}(X)$ is an ω -copy of S(U).

Putnam-Enderton analysis: If X is an ω -copy of J_{α} and $Z \ge_T \overline{S}^{(n)}(X)$ for all *n*, then $Z^{(5)}$ computes an ω -copy of $J_{\alpha+1}$.

We can also arithmetically define an ω -copies of the successor of a standard J-structure.

• Suppose $\langle X, M \rangle$ is an ω -copy of $\langle J_{\rho_{\alpha}^{n}}, A_{\alpha}^{n} \rangle$. Then there exists an ω -copy of $\langle J_{\rho_{\alpha}^{n+1}}, A_{\alpha}^{n+1} \rangle \sum_{\substack{d \models \\ d \models}}^{0}$ -definable in $\langle X, M \rangle$.

Here $d_{\models}^{(1)}$ is the *arithmetic complexity* of the formula defining \models^{Σ_1} for transitive, rud-closed structures.

Goal: show that the sequence of canonical copies of *J*-structures with projectum = 1 in L_{β_n} , where β_n is the least ordinal such that $L_{\beta_n} \models \mathsf{ZFC}_n^-$, cannot be G(n)-random with respect to a continuous measure.

We will assume for a contradiction that such a copy, say $\langle X, M \rangle$, is random for a continuous measure μ .

Idea: look at the initial segment of ω -copies computable in (some fixed jump of) μ .

Since $\langle X, M \rangle$ is μ -random, it cannot be among those.

But we can "reach" $\langle X, M \rangle$ from the ω -copies of J_{α} 's computable in μ , by iterating arithmetic operations and taking uniform limits.

Then apply the Stair Trainer Technique.

Problem: we cannot arithmetically define the set of ω -copies of structures J_{α} . We can define a set of "pseudocopies", subsets of ω that behave in most respects like actual ω -copies, but that may code structures that are not well-founded.

A pseudocopy is defined through the following properties, which are arithmetically definable.

- The relation E_X is non-empty and extensional.
- X is rud-closed.
- The structure coded by X satisfies $\varphi_{V=J}$.
- X contains (a copy of) ω as a element.

Furthermore, we can also prescribe which power sets of ω exist:

$$\exists y(y = \mathcal{P}^{(n)}(\omega)) \land \forall z(z \neq \mathcal{P}^{(n+1)}(\omega)).$$

Such a pseudocopy is called an *n*-pseudocopy.

Comparing pseudocopies

We can also linearly order pseudocopies by comparing their internal *J*-structures.

- To check whether two pseudocopies appear to code the same structure, we compare their reals, sets of reals, etc., up to n, the largest existing power of ω.
- For two *n*-copies, we put X ≺_n Y if there exists a J-segment in Y isomorphic to X.
- If comparability fails, we can arithmetically expose an ill-foundedness in one of the pseudocopies, by looking at the ordinal structure in each pseudocopy.

Result: a $\Sigma_{c_n}^0(Z)$ -definable total preorder $(\mathcal{PC}_n^*(Z), \prec_n)$ of pseudocopies recursive in Z.

Theorem: Suppose $N \ge 0$, $\alpha < \beta_N$, and for some k > 0, $\rho_{\alpha}^k = 1$. Then the canonical copy of the standard *J*-structure $\langle J_{\rho_{\alpha}^k}, A_{\alpha}^k \rangle$ is not G(N)-random with respect to any continuous measure.

$$[G(N) = 6^{N+2} \cdot (d_{\models}^{(1)} + 2N + 42)]$$

- Assume for a contradiction the canonical copy (X, M) is G(N)-random for continuous μ.
- Any pseudocopy in a well-founded initial segment of *PC*^{*}_N(μ) is a well-founded pseudocopy, and hence a true arithmetic copy of some *J*-structure.
- μ can arithmetically recognize the longest well-founded initial segment of \prec_N .

Lemma: Let $j \ge 0$. Suppose μ is a continuous measure and \prec is a linear order on a subset of ω such that the relation \prec and the field of \prec are both recursive in $\mu^{(j)}$. Suppose further X is (j+5)-random relative to μ , and $I \subseteq \omega$ is the longest well-founded initial segment of \prec . If I is recursive in $(X \oplus \mu)^{(j)}$, then I is recursive in $\mu^{(j+4)}$.

- As (X, M) is sufficiently random, we can build up a chain of pseudocopies computable from μ, using the stair trainer technique.
- One complication: μ and (X, M) have different copies, so we need to translate between them, which adds complexity at every step.
- This is offset by looking at the projecta, and recycling copies we have built at previous stages.