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Question

• A lot of progress has been made in studying properties of

random reals (Lebesgue or computable measures)

• Less clear: which reals in 2ω are random with respect to some

measure?

• How can we find a measure relative to which a given real is

random?

• This talk:

randomness ⊥ presence of an internal definability structure
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Randomness

• Suppose µ is a probability measure on 2ω, and Rµ is a

representation of µ. Suppose further that Z ∈ 2ω and n ≥ 1.

• An (Rµ,Z , n)-test is a set W ⊆ ω × 2<ω recursively

enumerable in (Rµ ⊕ Z )(n−1) such that∑
σ∈Wn

µ[σ] ≤ 2−n,

where Wn = {σ : (n, σ) ∈W }
• A real X passes a test W if X 6∈

⋂
n

⋃
σ∈Wn

[σ].

• A real X is (Rµ,Z , n)-random if it passes all (R,Z , n)-tests.

• A real X (µ,Z , n)-random if there exists a representation Rµ

such that X is (Rµ,Z , n)-random.
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Continuous measures

• µ is continuous if µ{X} = 0 for all X .

• X is random for a continuous measure iff it is random for a

dyadic continuous measure.

• This way we can avoid some representational issues.

• In the following, all measures are continuous dyadic.
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Orthogonality (0)

Stair Trainer Lemma: Suppose Z is µ-n-random, n ≥ 2. If

Y ≤T µ(n−1) and Y ≤T Z ⊕ µ, then Y ≤T µ.

(Generalizes a result by Downey, Nies, Weber, and Yu)

• Suffiently random reals form a minimal pair with instances of

the jump (relative to the measure).
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Orthogonality (I)

Stair Trainer Technique: If n ≥ 2, then for all k ≥ 0, ∅(k) is not

n-random with respect to a continuous measure.

• Suppose ∅(k) is µ-n-random for some µ. Then

• ∅′ ≤T ∅(k) and ∅′ ≤T µ′ ≤T µ(n−1).

• By Lemma, ∅′ is recursive in µ.

• Apply argument inductively to ∅(i), i ≤ k.
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Orthogonality (II)

Stair Trainer Limit Technique: For n ≥ 3, ∅(ω) is not n-random

with respect to a continuous measure.

• Assume for a contradiction that 0(ω) is µ-n-random for n ≥ 3

and continuous µ.

• By the previous proof, 0(k) ≤T µ for all k. By Enderton and

Putnam, if X is a ≤T -upper bound for {0(k) : k ∈ ω}, then

0(ω) ≤T X ′′.

• Therefore, 0(ω) ≤T µ′′, but since n ≥ 3 and 0(ω) is

µ-n-random, this is impossible.
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Randomness vs structure

Two main points:

• Steps in the hierarchy are given by simple, uniformly

arithmetic operations.

• One can pass from an upper bound to a uniform limit by an

arithmetic operation.
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Beyond arithemtic

Jensen’s Master codes for the constructible universe provide a

similarly stratified hierarchy of definability.

Goal: Show that randomness is equally incompatible with such

codes.
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The J-hiearchy

Cumulative hierarchy defined as

• J0 = ∅
• Jα+1 = rud(Jα)

• Jλ =
⋃
α<λ Jα for λ limit.

rud(X ) is the closure of X ∪ {X} under rudimentary functions

(primitive set recursion).
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Properties

• Each Jα is transitive and amenable (model of a sufficiently

large fragment of set theory).

• rank(Jα+1) = rank(Jα) + ω.

• L =
⋃
α Jα.

• The Σn-satisfaction relation over Jα, |=Σn
Jα

, is Σn-definable

over Jα, uniformly in α.

• The mapping β 7→ Jβ (β < α) is Σ1-definable over any Jα.

• There is a formula ϕV=J such that for any transitive set M,

M |= ϕV=J ⇔ ∃α M = Jα.
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Rudimentary functions

Every rudimentary function is a combination of the following nine

functions:

1. F0(x , y) = {x , y},
2. F1(x , y) = x \ y ,

3. F2(x , y) = x × y ,

4. F3(x , y) = {(u, z , v) : z ∈ x ∧ (u, v) ∈ y},
5. F4(x , y) = {(u, v , z) : z ∈ x ∧ (u, v) ∈ y},
6. F5(x , y) =

⋃
x ,

7. F6(x , y) = dom(x),

8. F7(x , y) = ∈ ∩ (x × x),

9. F8(x , y) = {{x(z)} : z ∈ y}.
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S-operator

S(X ) = [X ∪ {X}] ∪

[
8⋃

i=0

Fi [X ∪ {X}]

]

This gives rise to a finer hierarchy:

• S0 = ∅,
• Sα+1 = S(Sα),

• Sλ =
⋃
α<λ Sα (λ limit).

Then

Jα =
⋃
β<ωα

Sβ = Sωα.
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Projecta

Boolos & Putnam: If P(ω)∩ (Lα+1 \ Lα) 6= ∅, then there exists a

surjection f : ω → Lα in Lα+1.

Jensen extended and generalized this observation.

• For n, α > 0, the Σn-projectum ρnα is equal to the least γ ≤ α
such that P(ωγ) ∩ (Σn(Jα) \ Jα) 6= ∅.
• ρnα is equal to the least δ ≤ α such that there exists a function

f that is Σn(Jα)-definable over Jα such that f (D) = Jα for

some D ⊆ ωδ
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Master codes

A Σn master code for Jα is a set A ⊆ Jρnα that is Σn(Jα), such that

for any m ≥ 1,

Σn+m(Jα) ∩ P(Jρnα) = Σm(〈Jρnα ,A〉).

A Σn master code does two things:

1. It “accelerates” definitions of new subsets of Jρnα by n

quantifiers.

2. It replaces parameters from Jα in the definition of these new

sets by parameters from Jρnα (and the use of A as an “oracle”).
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Standard codes

Jensen exhibited a uniform, canonical way to define master codes,

by iterating Σ1-definability.

An+1
α := {(i , x) : i ∈ ω ∧ x ∈ Jρn+1

α
∧ 〈Jρnα ,A

n
α〉 |= ϕi (x , p

n+1
α )},

We will call the structure 〈Jρnα ,A
n
α〉 the standard Σn J-structure for

Jα.
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From set theory to recursion theory

We want to apply the recursion theoretic “Stair” techniques to

countable J-structures. We therefore have to code them as subsets

of ω.

If the projectum ρnα is equal to 1, all “information” about the

J-structure 〈Jρnα ,A
n
α〉 is contained in the standard code An

α, which

is simply a real (or rather, a subset of Vω).

These lend itself directly to recursion theoretic analysis (e.g. Boolos

and Putnam [1968], Jockusch Simpson [1976], Hodes [1980]).
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From set theory to recursion theory

The problem in our setting is that we want to uniformly work our

way through arithmetic copies of J-structures even when the

projectum is greater than 1.

For this purpose we have to code two objects, the sets Jα (which

keep track of the basic set theoretic relations) and the standard

codes over each Jα, which keep track of the definable objects

quantifier by quantifier.
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ω-copies

Let X ⊆ ω. The relational structure induced by X is 〈FX ,EX 〉,
where

xEX y ⇔ 〈x , y〉 ∈ X

and

FX = Field(EX ) = {x : ∃y (xEX y or yEX x) for some y}.

We will look at structures 〈X ,M〉, where X is a relational

structure, and M is a subset of FX (coding an additional

predicate).
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ω-copies

An ω-copy of a countable set-theoretic structure 〈S ,A〉, A ⊆ S , is

a pair 〈X ,M〉 of subsets of ω such that the structure coded by X

is extensional and there exists a surjection π : S → Field(EX ) such

that

∀x , y ∈ S [ x ∈ y ⇐⇒ π(x)EXπ(y) ], (1)

and

M = {π(x) : x ∈ A}. (2)

If ρnα = 1, then standard code can be seen directly as an ω-copy,

which we will call the canonical copy.
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Extracting information from copies

If 〈X ,M〉 is an ω-copy of 〈Jρn+1
α
,An+1

α 〉, then (X ⊕M)(2) computes

ω-copies of

• 〈Jρnα ,A
n
α〉, 〈Jρn−1

α
,An−1

α 〉, . . . , and 〈Jρ0
α
,A0

α〉 = 〈Jα,∅〉 = Jα,

• S (n)(Jβ), for all n ∈ ω, β < α.
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Defining copies

We can define ω-copies of new J-structures from ω-copies of given

J-structures using suitable versions of the S-operator.

There exists a Π0
5-definable function S(X ) = Y such

that, if X is an ω-copy of a countable set U, S(X ) is an

ω-copy of S(U).

Putnam-Enderton analysis: If X is an ω-copy of Jα and

Z ≥T S
(n)

(X ) for all n, then Z (5) computes an ω-copy of Jα+1.
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Defining copies

We can also arithmetically define an ω-copies of the successor of a

standard J-structure.

• Suppose 〈X ,M〉 is an ω-copy of 〈Jρnα ,A
n
α〉. Then there exists

an ω-copy of 〈Jρn+1
α
,An+1

α 〉 Σ0

d
(1)
|=

-definable in 〈X ,M〉.

Here d
(1)
|= is the arithmetic complexity of the formula defining |=Σ1 for

transitive, rud-closed structures.
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Recognizing copies

Goal: show that the sequence of canonical copies of J-structures

with projectum = 1 in Lβn , where βn is the least ordinal such that

Lβn |= ZFC−n , cannot be G (n)-random with respect to a continuous

measure.

We will assume for a contradiction that such a copy, say 〈X ,M〉, is

random for a continuous measure µ.
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Recognizing copies

Idea: look at the initial segment of ω-copies computable in (some

fixed jump of) µ.

Since 〈X ,M〉 is µ-random, it cannot be among those.

But we can “reach” 〈X ,M〉 from the ω-copies of Jα’s computable

in µ, by iterating arithmetic operations and taking uniform limits.

Then apply the Stair Trainer Technique.
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Recognizing copies

Problem: we cannot arithmetically define the set of ω-copies of

structures Jα. We can define a set of “pseudocopies”, subsets of ω

that behave in most respects like actual ω-copies, but that may

code structures that are not well-founded.
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Pseudocopies

A pseudocopy is defined through the following properties, which

are arithmetically definable.

• The relation EX is non-empty and extensional.

• X is rud-closed.

• The structure coded by X satisfies ϕV=J .

• X contains (a copy of) ω as a element.

Furthermore, we can also prescribe which power sets of ω exist:

∃y(y = P(n)(ω)) ∧ ∀z(z 6= P(n+1)(ω)).

Such a pseudocopy is called an n-pseudocopy.
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Comparing pseudocopies

We can also linearly order pseudocopies by comparing their internal

J-structures.

• To check whether two pseudocopies appear to code the same

structure, we compare their reals, sets of reals, etc., up to n,

the largest existing power of ω.

• For two n-copies, we put X ≺n Y if there exists a J-segment

in Y isomorphic to X .

• If comparability fails, we can arithmetically expose an

ill-foundedness in one of the pseudocopies, by looking at the

ordinal structure in each pseudocopy.

Result: a Σ0
cn(Z )-definable total preorder (PC∗n(Z ),≺n) of

pseudocopies recursive in Z .
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Canonical copies are not random

Theorem: Suppose N ≥ 0, α < βN , and for some k > 0, ρkα = 1.

Then the canonical copy of the standard J-structure 〈Jρkα ,A
k
α〉 is

not G (N)-random with respect to any continuous measure.

[G (N) = 6N+2 · (d (1)
|= + 2N + 42)]
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Proof

• Assume for a contradiction the canonical copy 〈X ,M〉 is

G (N)-random for continuous µ.

• Any pseudocopy in a well-founded initial segment of PC∗N(µ)

is a well-founded pseudocopy, and hence a true arithmetic

copy of some J-structure.

• µ can arithmetically recognize the longest well-founded initial

segment of ≺N .
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Recognizing well-foundedness

Lemma: Let j ≥ 0. Suppose µ is a continuous measure and ≺ is a

linear order on a subset of ω such that the relation ≺ and the field

of ≺ are both recursive in µ(j). Suppose further X is

(j + 5)-random relative to µ, and I ⊆ ω is the longest well-founded

initial segment of ≺. If I is recursive in (X ⊕ µ)(j), then I is

recursive in µ(j+4).
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Proof (continued)

• As 〈X ,M〉 is sufficiently random, we can build up a chain of

pseudocopies computable from µ, using the stair trainer

technique.

• One complication: µ and 〈X ,M〉 have different copies, so we

need to translate between them, which adds complexity at

every step.

• This is offset by looking at the projecta, and recycling copies

we have built at previous stages.
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