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Outer Measures
The Caratheodory Method

A premeasure is a function ρ : 2<ω → R+
0 ∪ {∞}

One can obtain an outer measure µρ from ρ by letting

µρ(X) = inf

{∑
i

ρ(xi ) :
⋃
i

[xi ] ⊇ X

}
.

µ = µρ is a countably subadditive, monotone set function.
Restriction to sets A which satisfy

(∀Y) µ(Y) = µ(Y ∩A) + µ(Y \ A),

yields the measurable sets.

The measurable sets form a σ-algebra, and µ is an
additive set function on this σ-algebra.



Effectivizing Measures

Let ρ be a computable premeasure, with µρ the induced
outer measure.

Definition A set X ⊆ 2ω has effectively µρ-measure zero if there
exists a uniformly computable sequence (Cn) of sets of
strings such that for all n,

X ⊆
⋃

σ∈Cn

[σ] and
∑

σ∈Cn

ρ(σ) 6 2−n.



Hausdorff Measures and Hausdorff Dimension

Hausdorff measures Hs arise from the premeasures
ρ(σ) = 2−|σ|s , s > 0.

It is obvious that HsX = 0 implies HtX = 0 for all t > s.

Definition The Hausdorff dimension of X is defined as

dimH X = inf{s > 0 : HsX = 0}.



Effective Hausdorff Dimension

Definition The effective Hausdorff dimension of X is defined as

dim1
H X = inf{s ∈ Q+

0 : X is effectively Hs -null}.

[Lutz 2000]

There are single reals of non-zero dimension: every
Martin-Löf random real has dimension one.

Effective dimension has an important stability property:

dim1
H X = sup{dim1

H{A} : A ∈ X}.

[Lutz 2000]



Effective Hausdorff Dimension
Effective dimension as degree of randomness

Theorem For every real A,

dim1
H A = lim inf

n→∞ K (A�n)

n
=: K(A).

[Ryabko 1984; Mayordomo 2002]



Effective Hausdorff Dimension
The three basic examples

Given 0 < r < 1 rational, let Zr = {bn/rc : n ∈ N}. Given
a Martin-Löf random set X , define Xr by

Xr (m) =

{
X (n) if m = bn/rc,
0 otherwise.

Then dim1
H Xr = r .

Let µp be a Bernoulli (“coin-toss”) measure with bias
p ∈ Q ∩ [0, 1], and let B be Martin-Löf random with
respect to µp. Then

dim1
H B = H(µp) := −[p log p + p log(1 − p)].



Effective Hausdorff Dimension
The three basic examples

Let U be a universal, prefix-free machine. Given a
computable real number 0 < s 6 1, the binary expansion
of the real number

Ω(s) =
∑

σ∈dom(U)

2−
|σ|
s

has effective dimension s [Tadaki 2002]. (Note that Ω(1)

is just Chaitin’s Ω.)



Effective Hausdorff Dimension
The basic examples imply genuine random content

Each of the three examples actually computes a
Martin-Löf random real.

This is obvious for the “diluted” sequence.

For computable Bernoulli measures, one may use
Von-Neumann’s trick to turn a biased random real into a
uniformly distributed random real. More generally, Levin
(1970) and Kautz (1991) have shown that any real which
is random with respect to computable measure computes
a Martin-Löf random real.

Ω(s) computes a fixed-point free function. It is a
left-computable real, and hence it follows from the
Arslanov completeness criterion that Ω(s) is Turing
complete (and thus T-equivalent to a Martin-Löf random
real).



The Dimension Problem
Are there “genuine” reals of non-integral dimension?

The stability property implies that the Turing lower cone
of each of the three examples has effective dimension 1.

Question Are there any Turing lower cones of non-integral
dimension?

This is an open problem. Any such lower cone would
come from a real of non-integral dimension for which it is
not possible to extract some content of higher degree of
randomness effectively.



Upper Cones
Upper cones always have maximal dimension

For upper cones, the situation is quite clear.

It is known that the Turing upper cone of a real has
Lebesgue measure zero unless the real is computable
[Sacks 1963].

Theorem For any real A, the many-one upper cone of A has
(classical) Hausdorff dimension 1.



Lower Cones and Degrees

The dimension of a lower cone and a degree coincide.

This follows from the sparse coding technique: Given two
reals A 6r B, choose a computable real R of density
limn |R ∩ {0, . . . , n − 1}|/n = 1, and let C equal A on R
and B on the complement of R.

C will be r -equivalent to B and be of the same dimension
as A. It follows that the dimension of the degree and the
lower cone of a set coincide.



Many-One Reducibility

Theorem Let µp be a computable Bernoulli measure with bias p. If
A is µp-random, then

B 6m A ⇒ dim1
H B 6 H(µp).

[Reimann and Terwijn 2004]

Proof. Given an m-reduction f , define
F = {n : (∀m < n)f (m) 6= f (n)}, so F is the set of all
positions of B, where an instance of A is queried for the
first time.

F induces a Kolmogorov-Loveland place selection rule. If
A is µp-random, this selection rule will yield a new
sequence with the same limit frequency as A.



Weaker Reducibilities

This technique does not extend to weaker reducibilities,
since for Bernoulli measures the Levin-Kautz result holds
for a total Turing reduction.

Stephan (2005) was able to construct wtt-lower cone of
non-integral effective dimension in a relativized world:

There is a real A and an oracle B such that

1/3 6 dimB
H{D : D 6B

wtt A}) 6 1/2.



A Wtt Lower Cone of Non-Integral Dimension
The result

Theorem For each rational α, 0 6 α 6 1, there is a real A 6wtt ∅ ′
such that

K(A) = α and (∀Z 6wtt A) K(Z ) 6 α.



A Wtt Lower Cone of Non-Integral Dimension
The strategy

Requirements:

R〈e,b〉 : Z = Ψe(A) ⇒ ∃(k > j) K (Z �k) 6+ (α + 2−b)k

where (Ψe) is a uniform listing of wtt reduction
procedures.

We can assume each Ψe also has a certain (non-trivial)
lower bound on the use ge , because otherwise the
reduction would decrease complexity anyway.



A Wtt Lower Cone of Non-Integral Dimension
The strategy

We construct A inside the Π0
1 class

P = {Z : (∀n > n0) K (Z �n) > bαnc}

(This ensures A has dimension at least α.)

P is given as an effective approximation through clopen
sets Ps .

We approximate longer and longer initial segments σj of
A, where σj is a string of length mj , both σj ,mj

controlled by Rj .



A Wtt Lower Cone of Non-Integral Dimension
The strategy

Define a length kj where we intend to compress Z , and let
mj = ge(kj).

Define σj of length mj in a way that, if x = Ψ
σj
e is defined

then we compress it down to (α + 2−bj )kj , by enumerating
an appropriate request into a Kraft-Chaitin set L.

The opponent’s answer could be to remove σj from P.
(σj is not of high dimension.)

In this case, the capital he spent for this removal exceeds
what we spent for our request, so we can account our
capital against his.

Of course, usually σj is much longer than x . So we will
only compress x when the measure of oracle strings
computing it is large.



A Wtt Lower Cone of Non-Integral Dimension
An important Lemma

We assume that P is effectively approximated by clopen
sets Ps .

Lemma Let C be a clopen class such that C ⊆ Ps and C ∩ Pt = ∅
for stages s < t. Then

Ωt − Ωs > (λC)α.



A Wtt Lower Cone of Non-Integral Dimension
Combining the strategies Rj

In the course of the construction, some Rj might have to
pick a new σj .

In this case we have to initialize all Rn of lower priority
(n > j).

We have to make sure that this does not make us
enumerate too much measure into L.

We therefore have to assign a new length kn to the
strategies Rn.

For this, it is important to know the use of the reduction
related to Rj .



The Turing Case

It remains an open problem whether there exists a Turing
lower cone of non-integral effective dimension.

This case appears to be much harder. It is, for instance,
not even known whether there exists a set of non-integral
dimension which does not compute a Martin-Löf random
set.

Theorem There exists computable, non-decreasing, unbounded
function f and a set A such that

K (A�n) > f (n)

and A does not compute a Martin-Löf random set.

[Kjos-Hanssen, Merkle, and Stephan 2004; Reimann and
Slaman 2004,]
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