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Abstract. A theorem of Besicovitch and Davies implies for Cantor
space 2ω that each Σ1

1 (analytic) class of positive Hausdorff dimension
contains a Π0

1 (closed) subclass of positive dimension. We consider the
weak (Muchnik) reducibility ≤w in connection with the mass problem
S(U) of computing a set X ⊆ ω such that the Σ1

1 class U of positive
dimension has a Π0

1 (X) subclass of positive dimension.
We determine the difficulty of the mass problems S(U) through the fol-
lowing results:
(1) Y is hyperarithmetic if and only if {Y } ≤w S(U) for some U ;
(2) there is a U such that if Y is hyperarithmetic, then {Y } ≤w S(U);
(3) if Y is Π1

1 -complete then S(U) ≤w {Y } for all U .
Keywords: geometric measure theory, algorithmic randomness, com-
putability theory.

1 Introduction

One of the most useful properties of Lebesgue measure λ is its regularity : For
any measurable set E,

λ(E) = sup{λ(K) : K ⊆ E,K compact} (1)
= inf{λ(U) : U ⊇ E,U open}. (2)

This implies that (using the appropriate convergence theorems), for measure
theoretic considerations, E can be replaced by a Gδ or Fσ set of the same mea-
sure, simplifying the complicated topological structure of arbitrary Borel sets.

The regularity properties (1) and (2) hold more generally for any positive
Borel measure on a σ-compact Hausdorff space in which any compact set has
finite measure, but fails to be true in general. It is one of the major results in
geometric measure theory that the s-dimensional Hausdorff measures Hs are
still inner regular1.
1 While outer regularity (2) fails for Hausdorff measures in general (open sets have

infinite Hs-measure for s < 1), one can still find, for any measurable set E, a Gδ
set of the same Hausdorff measure. This is often referred to as Gδ-regularity (see
Rogers[21]).
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Theorem 1. For any analytic (Σ1
1) set E ⊆ Rn and for any s ≥ 0,

Hs(E) = sup{Hs(K) : K ⊆ E,K compact}.

Theorem 1 was shown by Besicovitch [1] for Σ0
3 sets and extended by Davies [2]

to Σ1
1 sets. It was subsequently generalized to various non-Euclidean settings. In

1995, Howroyd [10] showed that inner regularity holds for Hs on any compact
metric space, in particular for Cantor space 2ω with the standard metric

d(X,Y ) =

{
2−min{n : X(n) 6=Y (n)} X 6= Y

0 X = Y.

In the following, we refer to the inner regularity property of Hausdorff measure in
Euclidean and compact metric spaces simply as the Besicovitch-Davies Theorem.

The hierarchies of effective descriptive set theory allow for a further ramifi-
cation of regularity properties. Any (boldface) Borel set is effectively (lightface)
Borel relative to a parameter. Hence we can, for instance, given a (lightface)
Σ0
α set, measure how hard it is to find a Σ0

2(Y ) subset of the same measure, by
proving lower bounds on the parameter Y ∈ 2ω.

Dobrinen and Simpson [4] investigated this question for Σ0
3 sets in Lebesgue

measure and discovered an interesting connection with measure-theoretic dom-
ination properties. Subsequently, measure-theoretic domination properties were
linked to LR-reducibility, a reducibility concept from algorithmic randomness.
Recently, Simpson [24] gave a complete characterization of the regularity prob-
lem for Borel sets with respect to Lebesgue measure. One of his results states
that the property that every Σ0

α+2 (α a recursive ordinal) subset of 2ω has a
Σ0

2(Y ) subset of the same Lebesgue measure holds if and only if 0(α) ≤LR Y .
His paper [24] also contains a survey of previous results along with an extensive
bibliography.

In this paper, we study the complexity of the corresponding inner regularity
for Hausdorff measure on 2ω. We will see that, in contrast to the case of Lebesgue
measure, finding subsets of positive Hausdorff measure can generally not be
done with the help of a hyperarithmetical oracle. The core observation is that
determining whether a set of reals has positive Hausdorff measure is more similar
to determining whether it is non-empty than to determining whether it has
positive Lebesgue measure.

Determining the exact strength of the Besicovitch-Davies Theorem is not
only of intrinsic interest. A family of important problems in theoretical computer
science ask some version of the question to what extent randomness (which is
a useful computational tool) can be extracted from a weakly random source
(which is often all that is available). Such questions can also be expressed in
computability theory. The advantage, and simultaneously the disadvantage, of
doing so is that one abstracts away from considering any particular model of
efficient computation. One way to conceive of weak randomness is in terms of
effective Hausdorff dimension. Miller [18] and Greenberg and Miller [8] obtained
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a negative result for randomness extraction: there is a real of effective Hausdorff
dimension 1, that does not Turing compute any Martin-Löf random real. Despite
this negative result, effective Hausdorff dimension, which is a “lightface” form
of Hausdorff dimension, has independent interest, as it seems to offer a way to
redevelop much of geometric measure theory (for example Frostman’s Lemma
[20]) in a more effective way.

Another conception of weak randomness comes from considering sets that
differ from Martin-Löf random sets only on a sparse set of bits [13], or sets that
are subsets of Martin-Löf sets [9,12,14]. Actually, these conceptions are related,
as we will try to illustrate with the help of the set MIN of all reals that have
minimal Turing degree.

The following result seems rather surprising.

Theorem 2. The set MIN has Hausdorff dimension 1.

Proof. This is merely a relativization of the theorem of Greenberg and Miller [8]
that there is a minimal Turing degree of effective Hausdorff dimension 1. 2 �

Theorem 2 says that high effective Hausdorff dimension is not sufficient to be
able to extract randomness. It can also be used to deduce that infinite subsets
of random sets are not sufficiently close to being random, either.

The set MIN is Π0
4 , so by the Besicovitch-Davies Theorem, MIN has a closed

subset C that still has Hausdorff dimension as close to 1 as desired. Each closed
set C in Cantor space is Π0

1 (X) for some oracle X. By a reasoning similar
to [3, Theorem 4.3], each X-random closed set contains a member of C. It
follows by reasoning as in [14] that each X-random set has an infinite subset of
minimal Turing degree - in particular an infinite subset that Turing computes
no 1-random (Martin-Löf random) set. Thus, if X could be chosen recursive, we
would have a positive answer to the following question.

Question 1. Does each 1-random subset of ω have an infinite subset that com-
putes no 1-random sets?

A partial answer to this question is known, using other methods:

Theorem 3 ([12]). Each 2-random set has an infinite subset that computes no
1-random sets.

But it is easy to see that the set X just referred to cannot be chosen re-
cursive. To wit, by the computably enumerable degree basis theorem there is
no nonempty Π0

1 class consisting entirely of sets of minimal Turing degree. In
the present article we show that X can be taken recursive in Kleene’s O, but in
general, for arbitrary Σ1

1 classes (or even just arbitrary Π0
2 classes) in place of

MIN, X cannot be taken hyperarithmetical.

2 Their work in turn builds on the construction of a diagonally non-recursive function
of minimal Turing degree in Kumabe and Lewis [16].
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We expect the reader to be familiar with basic descriptive set theory and
the effective part on hyperarithmetic sets and Kleene’s O. Standard references
are [22] and [23]. We also assume basic knowledge of Hausdorff measures and
dimension, as can be found in [21]. The proofs are rather succinct, but details
can easily be filled in using basic results and methods of the above theories.

2 Index set complexity

Recall that the Hausdorff dimension of a set E in a metric space X is defined
as

dimH(E) = inf{s ≥ 0: Hs(E) = 0}.
To keep the presentation simple, we concentrate on the problem of finding,

given a set E ⊆ 2ω, a closed subset of positive Hausdorff dimension. Note that if
dimH(E) > 0 and E is Σ1

1 , then by the Besicovitch-Davies Theorem there exists
a closed subset C ⊆ E such that dimH(C) > 0.

Davies’ argument is based on the representation of analytic sets via Souslin
schemes. A Souslin scheme in a metric space X is a family (Ps : s ∈ ω<ω) of
closed sets. A set A is analytic if and only if it can be represented as

A =
⋃
f∈ωω

⋂
n∈ω

Pf�n

for some Souslin scheme (Ps : s ∈ ω<ω). Using a technique now known as the
increasing sets lemma, Davies constructs a function f : ω → ω such that for
each n, the closed set

Fn :=
⋃

s≤f�n

⋂
i<|s|

Ps�i

(where s ≤ f � n means |s| = n and s(i) ≤ f(i) for i < n) has sufficiently
large Hsεn

-measure, for some εn > 0. The intersection of the Fn is then the
desired closed subset of positive measure. If we translate this to the canonical
representation of Σ1

1 classes in Cantor space, we obtain the following version of
the Besicovitch-Davies Theorem.

Theorem 4. For each Σ1
1 class C of dimension d > 0 and for ε > 0 , written

in canonical form
C = {X | ∃Y ∀a∃b R(X,Y, a, b)}

where R is a recursive predicate, there exists a function g ∈ ωω such that for
each f majorizing g, the class

Cf := {X | ∃Y ∀a ∃b < f(a) R(X,Y, a, b)}

is a closed subclass of dimension at least d− ε.
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Initially, one may think that the computational difficulty in determining
whether a set of reals has positive Hausdorff dimension could be similar to the
difficulty in determining whether it has positive Lebesgue measure, but we find
that it is more similar to the determining whether it is non-empty – and this is
more difficult than the measure question. While questions about Lebesgue mea-
sure can often be answered using an arithmetical oracle, for non-emptiness we
often have to go beyond even the hyperarithmetical. As we shall see this level
of difficulty first arises at the Gδ (Π0

2) level; we start by going over the simpler
cases of open (Σ0

1), closed (Π0
1), and Fσ (Σ0

2) sets.

Theorem 5. The following families are identical, and have Σ0
1 -complete index

sets.

1. Σ0
1 classes that are nonempty;

2. Σ0
1 classes that have positive Hausdorff dimension;

3. Σ0
1 classes that have positive measure.

Proof. Given an c.e. set We ⊆ 2<ω, let We =
⋃
σ∈2<ω Nσ, where Nσ = {X ∈

2ω : σ ⊂ X}. Since any non-empty open set has positive Lebesgue measure, and
having positive Lebesgue measure implies having positive dimension, the three
statements are equivalent. The corresponding index sets are c.e. since We 6= ∅ if
and only if ∃s, σ(ϕe,s(σ) ↓, and they are complete by Rice’s Theorem. �

The case of Π0
1 classes is only slightly more complicated.

Theorem 6. The set of indices of Π0
1 classes that are nonempty is Π0

1 -complete.

Proof. A tree T does not have an infinite path if and only if for some level n,
no string of length n is in T . If T is co-c.e. the latter event is c.e. and hence the
set {e : [Te] 6= ∅} is Π0

1 . It is Π0
1 -hard by Rice’s Theorem. �

Theorem 7. The set of indices of Π0
1 classes that have positive Lebesgue mea-

sure is Σ0
2 -complete.

Proof (Sketch). Given a tree Te, [Te] has positive Lebesgue measure if and only
if ∃n∀m(|Te ∩ {0, 1}m| ≥ 2m−n|). Hence the corresponding index set is Σ0

2 . One
can reduce the Σ0

2 complete set Fin = {e : We finite} to it by effectively building,
for each e, a tree Te such that if and only if a given We is finite, the measure
is positive. This is achieved by cutting the measure in half (i.e. terminating an
appropriate number of nodes) whenever another number enters We. �

Theorem 8. The set of indices of Π0
1 classes of Hausdorff dimension zero is

Π0
2 -complete.

Proof (Sketch). A Π0
1 class C has Hausdorff dimension zero if and only if for each

d > 0 and n, there is a clopen set Un, induced by finitely many strings σ1, . . . , σk,
so that

∑
2−d|σi| ≤ 2−n, and such that the Σ0

1 statement C ⊆ Un holds. Thus the
set of indices of Π0

1 classes of Hausdorff dimension zero is Π0
2 . To see that this

set is in fact Π0
2 -complete, we reduce the Π0

2 complete set Inf = {e : We infinite}
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to it. This is done by controlling the branching rate: Given e, we construct a
co-r.e. tree Te. Each time a new number enters the c.e. set, the branching rate
of Te is reduced: When we see the n-th number enter We at stage s, we thin out
Te by delaying, above level s, the level at which the next splitting occurs by one.
�

Theorem 9. The set of indices of Σ0
2 classes that are nonempty is Σ0

2 -complete.

Proof. A Σ0
2 class is nonempty if and only if some of the Π0

1 classes in the
effective union are nonempty. �

Theorem 10. The set of indices of Σ0
2 classes of positive Hausdorff dimension

is Σ0
2 -complete.

Proof. Hausdorff dimension is countably stable, that is, if E =
⋃
nEn, then

dimH(E) = supn dimH(En). Hence a Σ0
2 class has positive Hausdorff dimension if

and only if some of the Π0
1 classes in the effective union have positive dimension.

�

Theorem 11. The set of indices of Π0
2 classes that have positive Hausdorff

dimension is Σ1
1 -complete.

Proof. For a given Π0
2 class G, we can consider the “Cartesian product”

P = G × 2ω := {G⊕H | G ∈ G, H ∈ 2ω} (1)

where ⊕ denotes the usual recursion-theoretic join. By the product formula for
Hausdorff dimension (adapted to Cantor space, see [17,19]), if G 6= ∅,

dimH(G × 2ω) ≥ dimH(G) + dimH(2ω)
2

=
dimH(G)

2
+

1
2
,

Hence the set P has positive Hausdorff dimension if and only if it has dimension
at least 1/2, if and only if G 6= ∅. Since the set of indices of Π0

2 classes in 2ω

that are nonempty is Σ1
1 -hard, so is the set of indices of Π0

2 classes that have
positive Hausdorff dimension. By the Besicovitch-Davies Theorem 4, the set of
indices of Σ1

1 classes that are of positive dimension is Σ1
1 , since

dim{X | ∃Y ∀a∃bR(X,Y, a, b)} > 0⇔ ∃f dimCf > 0.

�

Thus, the Besicovitch-Davies Theorem (Theorem 4) turns out to be enough
information to completely classify the index set complexity of classes that have
positive Hausdorff dimension from arithmetical pointclasses and up to Σ1

1 ; see
Figure 1.

Question 2. What is the complexity of the set of indices of Π1
1 classes that have

positive Hausdorff dimension?

At the level Π0
2 it is far more complicated to determine whether a class has

positive dimension than whether it has positive Lebesgue measure (this is Σ0
3).

Question 3. What is the complexity of the set of indices of Σ1
1 classes that have

positive Lebesgue measure?
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Fig. 1: Index set complexity of some classes of reals. For example, the set of
indices of Π0

2 classes that are of positive Hausdorff dimension is Σ1
1 -complete,

and this is shown in Theorem 11.

Family Nonempty? Positive Hausdorff dimension?

Σ0
1 Σ0

1 -complete (5) Σ0
1 -complete (5)

Π0
1 Π0

1 -complete (6) Σ0
2 -complete (8, 10)

Σ0
2 Σ0

2 -complete (9)

Π0
2 Σ1

1 -complete Σ1
1 -complete (11)

Σ1
1

3 Closed subsets of positive dimension

Recall that A ≤T B if A is Turing reducible to B; A ≤h B if A is hyperarith-
metical in B; and, for sets of reals A, B, A ≤w B if A is weakly (Muchnik)
reducible to B, i.e., for each B ∈ B there is some A ∈ A such that A ≤T B.

Definition 1. Let U be a Σ1
1 class of positive Hausdorff dimension. The mass

problem S(U) is defined to be the collection of sets X ⊆ ω such that U has a
Π0

1 (X) subclass of positive dimension.

We determine the difficulty of the mass problems S(U) in Theorems 13, 15,
and 16 below; the situation is summarized in Figure 2.

In the following definition, we are interested in the case Γ = Σ1
1 .

Definition 2. A subset B of ωω is called a basis for a pointclass Γ if each
nonempty collection of reals that belongs to Γ has a member in B.

Theorem 12 (Basis theorems for Σ1
1). Each of the following classes are

bases for Σ1
1 :

(1) {X | X ≤T O}, the sets recursive in some Π1
1 set (see Rogers [22, XLII(b)]);

(2) {X | X <h O}, the sets of hyperdegree strictly below O(Gandy [6]; see also
Rogers [22, XLIII(a)]);

(3) {X | X 6≤h A & A 6≤h X} (where A is any given non-hyperarithmetical
set) (Gandy, Kreisel, and Tait [7]).

Theorem 13. For each set B that is a basis for Σ1
1 and each Σ1

1 class U of
positive dimension, there is some X ∈ B such that U has a Π0

1 (X) subclass of
positive dimension.

Proof. Consider a Σ1
1 class of the form

{X | (∃Y )(∀a)(∃b)R(a, b, Y,X)}
and the closed subclass from Theorem 4,

Cf = {X | (∃Y )(∀a)(∃b < f(a))R(a, b, Y,X)}
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O

S(�U) (Theorem 15)

S(2ω)

HYP

∅�
∅��

...S(U)

Tuesday, January 26, 2010

Fig. 2: The relative position in the Muchnik lattice of the various mass prob-
lems S(U). At the top is Kleene’sO, according to Theorems 12(1) and 13. The
ellipse represents the hyperarithmetical sets HYP with their cofinal sequence
{0(α) : α < ωCK1 }. The top S( eU) class is located as indicated in Theorem 16.
Each S(U) bounds only sets in HYP, per Theorem 15. It is not known which
of the classes U here displayed might represent the set of minimal Turing
degrees MIN .

which is a Π0
1 (f) class in 2ω. Now consider

{f ∈ ωω | dimCf > 0}
This is a Σ0

2 class in ωω, in particular it is Σ1
1 , hence it has a member f in B;

and Cf for such an f is a Π0
1 (Gf ) class, where Gf is the graph of f . �

In particular, U always has a Π0
1 (O) subclass of positive dimension.

Definition 3 (Solovay [26]). A family F of infinite sets of natural numbers is
said to be dense if each infinite set of natural numbers has a subset in F . A set
A of natural numbers is said to be recursively encodable if the family of infinite
sets in which A is recursive is dense.

Theorem 14 (Solovay [26]). The recursively encodable sets coincide with the
hyperarithmetic sets.

Theorem 15. For each Y , if {Y } ≤w S(U) for some U then Y is hyperarith-
metical.

Proof. Suppose Y is recursive in each tree defining a closed subset of positive
dimension of some Π0

2 class U . By Theorem 4, Y is recursively encodable. So by
Theorem 14, Y is hyperarithmetic. �
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Theorem 16. There is a Π0
2 class Ũ such that for each hyperarithmetical set

Y , {Y } ≤w S(Ũ).

Proof. Let HYP denote the collection of all hyperarithmetical sets. Note that
the class

U = {X | ∀H ∈ HYPH ≤T X}
is Σ1

1 (an observation made by Enderton and Putnam [5]). This class U already
has positive Hausdorff dimension, but the more involved proof of this fact can
be avoided by again passing to the product set Ũ = U × 2ω.

Suppose X is such that there is a Π0
1 (X) subclass of U that is of positive

dimension and hence nonempty. Then by the relativized low and hyperimmune-
free basis theorems, respectively, each H in HYP is recursive in a set A that is
low relative to X, and recursive in a set B that is hyperimmune-free relative to
X. But A and B form a minimal pair over X, so H ≤T X.

Now, U , being Σ1
1 , is the projection of a Π0

2 class. Of course, if every member
of the projection computes H then so does every member of the original Π0

2 class
(since a pair A⊕B computes both A and B). So we can replace U with such a
Π0

2 class; Ũ is then still Π0
2 . �
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