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Notation

Uε(x) Ball of radius ε about x
U Topological closure of U
2<N Set of finite binary strings
σ,τ, . . . Finite binary strings
2N Cantor space, set of all infinite binary sequences
NN Baire space, set of all infinite sequences of natural numbers
α |n Length n initial segment of sequence α, α(0) . . .α(n− 1)
Nσ Open cylinder defined by σ
LipL(X ) Set of L-Lipschitz functions on X
diam(X ) Diameter of a set X in a metric space, diam(X ) = sup{d(x , y): x , y ∈ X }
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Lecture 1: Perfect Subsets of the Real Line

Descriptive set theory nowadays is understood as the study of definable subsets
of Polish Spaces. Many of its problems and techniques arose out of efforts to
answer basic questions about the real numbers. A prominent example is the
Continuum Hypothesis (CH):

If A⊆ R is uncountable, does there exist a bijection between A and
R? That is, is every uncountable subset of R of the same cardinality
as R? [Cantor, 1890’s]

Early approaches to this problem tried to show that CH holds for a number of
sets with an easy topological structure. It is a standard exercise of analysis to
show that every open set satisfies CH. (An open set contains an interval, which
maps bijectively to R.) For closed sets, the situation is less clear. Given a set
A⊆ R, we call x ∈ R an accumulation point of A if

∀ε > 0 ∃z ∈ A [z 6= x & z ∈ Uε(x)],

where Uε(x) denotes the standard ε-neighborhood of x in R1. Call a non-empty
set P ⊆ R perfect if it is closed and every point of P is an accumulation point. In
other words, a perfect set is a closed set that has no isolated points. It is not hard
to see that for a perfect set P, every neighborhood of a point p ∈ P contains
infinitely many points.

Obviously, R itself is perfect, as is any closed interval in R. There are totally
disconnected perfect sets, such as the middle-third Cantor set in [0, 1]

Theorem 1.1: A perfect subset of R has the same cardinality as R.

Proof. Let P ⊆ R be perfect. We construct an injection from the set 2N of all
infinite binary sequences into P. An infinite binary sequence ξ = ξ0ξ1ξ2 . . . can
be identified with a real number ∈ [0,1] via the mapping

ξ 7→
∑

i≥0

ξi2
−i−1.

Note that this mapping is onto. Hence the cardinality of P is at least as large as
the cardinality of [0, 1]. The Cantor-Schröder-Bernstein Theorem (for a proof
see e.g. (author?) [Jec03]) implies that |P|= 2ℵ0 .

1There are some divergences in terminology. Some authors call an accumulation point a limit
point. We reserve the latter term for any point that is the limit of a sequence of points from a
given set. Hence every member of a set is a limit point of that set. In particular, isolated members
of a set are limit points.
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Choose x ∈ P, and let ε0 = 1 = 20. Since P is perfect, P ∩ Uε0
(x). Let x0 6= x1

be two points in P ∩ Uε0
(x), distinct from x . Let ε1 be such that ε1 ≤ 1/2,

Uε1
(x0), Uε1

(x1) ⊆ Uε0
(x), and Uε1

(x0) ∩ Uε1
(x1) = ;, where U denotes the

closure of U .

We can iterate this procedure recursively with smaller and smaller diameters,
using the fact that P is perfect. This gives rise to a so-called Cantor scheme, a
family of open balls (Uσ). Here the index σ is a finite binary sequence, also
called a string. The scheme has the following properties.

C1) diam(Uσ)≤ 2−|σ|, where |σ| denotes the length of σ.

C2) If τ is a proper extension of σ, then Uτ ⊂ Uσ.

C3) If τ and σ are incompatible (i.e. neither extends the other), then

Uτ ∩ Uσ = ;.

C4) The center of each Uσ, call it xσ, is in P.

U

U0 U1

U00 U01 U10 U11

Figure 1: Cantor Scheme

Let ξ be an infinite binary sequence. Given n≥ 0, we denote by ξ |n the string
formed by the first n bits of ξ, i.e.

ξ |n= ξ0ξ1 . . .ξn−1.
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The finite initial segments give rise to a sequence xξ|n of centers. By (C1) and
(C2), this is a Cauchy sequence. By (C4), the sequence lies in P. Since P is
closed, the limit xξ is in P. By (C3), the mapping ξ 7→ xξ is well-defined and
injective.

Theorem 1.2: Every uncountable closed subset of R contains a perfect subset.

Proof. Let C ⊆ R be uncountable and closed. We say z ∈ R is a condensation
point of C if

∀ε > 0 [Uε(z)∩ C uncountable].

Let D be the set of all condensation points of C . Note that D ⊆ C , since every
condensation point is clearly an accumulation point and C is closed. Furthermore,
we claim that D is perfect. Clearly D is closed. Suppose z ∈ D and ε > 0. Then
Uε(z)∩C is uncountable. We would like to conclude that Uε(z)∩D is uncountable,
too, since this would mean in particular that Uε(z)∩D is infinite. The conclusion
holds if C \ D is countable. To show that C \ D is countable, we use the fact that
every open interval in R is the union of countably many open intervals with
rational endpoints. Note that there are only countably many such intervals. If
y ∈ C \ D, then for some δ > 0, Uδ(y)∩ C is countable. y is contained in some
subinterval Uy ⊆ Uδ(y) with rational endpoints. Thus, we have

C \ D ⊆
⋃

y∈C\D
Uy ∩ C ,

and the right hand side is a countable union of countable sets, hence countable.

We will later encounter an alternative (more constructive) proof that gives
additional information about the complexity of the closed set C . For now we
conclude with the fact we started out to prove.

Corollary 1.3: Every closed subset of R is either countable or of the cardinality of
the continuum.
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Lecture 2: Polish Spaces

The proofs in the previous lecture are quite general, that is, they make little use
of specific properties of R. If we scan the arguments carefully, we see that we
can replace R by any metric space that is complete and contains a countable basis
of the topology.

Review of some concepts from topology

Let (X ,O) be a topological space. A family B ⊆ O of subsets if X is a basis
for the topology if every open set from O is the union of elements of B. For
example, the open intervals with rational endpoints form a basis of the standard
topology of R. (We used this fact in Lecture 1.) S ⊆ O is a subbasis if the set
of finite intersections of sets in S is a basis for the topology. Finally, if S is any
family of subset of X , the topology generated by S is the smallest topology on
X containing S. It consists of all unions of finite intersections of sets in S∪{X ,;}.

A set D ⊂ X is dense if for open U 6= ; there exists z ∈ D ∩ U . If a topological
space (X ,O) has a countable dense subset, the space is called separable.

If (X i)i∈I is a family of topological spaces, one defines the product topology on
Πi∈I X i to be the topology generated by the sets π−1

i (U), where i ∈ I , U ⊆ X i is
open, and πi : Πi∈I X i → X i is the ith projection.

Now suppose (X , d) is a metric space. With each point x ∈ X and every ε > 0
we associate an ε-neighborhood or ε-ball

Uε(x) = {y ∈ X : d(x , y)< ε}.

The ε-neighborhoods form the basis of a topology, called the topology of the
metric space (X , d). If this topology agrees with a given topology O on X , we
say the metric d is compatible with the topology O. If for a topological space
(X ,O) there exists a compatible metric, (X ,O) is called metrizable2.

If a topological space (X ,O) is separable and metrizable, then the balls with
center in a countable dense subset D and rational radius form a countable base
of the topology.

2Note that a compatible metric is not necessarily unique.

2 – 1



Polish spaces

Definition 2.1: A Polish space is a separable topological space X for which
exists a compatible metric d such that (X , d) is a complete metric space.

As mentioned before, there may be many different compatible metrics that make
X complete. If X is already given as a complete metric space with countable
dense subset, then we call X a Polish metric space.

The standard example is, of course, R, the set of real numbers. One can obtain
other Polish spaces using the following basic observations.

Proposition 2.2:

1) A closed subset of a Polish space is Polish.

2) The product of a countable (in particular, finite) sequence of Polish spaces is
Polish.

Hence we can conclude that Rn, C, Cn, the unit interval [0,1], the unit circle
T = {z ∈ C: |z| = 1}, and the infinite dimensional spaces RN and [0,1]N (the
Hilbert cube) are Polish spaces.

Any countable set with the discrete topology is Polish, by means of the discrete
metric d(x , y) = 1 ⇔ x 6= y .

Some subsets of Polish spaces are Polish but not closed. For example, (0, 1), the
open unit interval, is a Polish space, of course with a different metric. We will
later characterize all subsets of Polish spaces that are Polish themselves.

Product spaces

In a certain sense, the most important Polish spaces are of the form AN, where A
is a countable set carrying the discrete topology. The standard cases are

2N, the Cantor space and NN, the Baire space.

We will, for now, denote elements from AN by lower case greek letters from the
beginning of the alphabet. The n-th term of α we will denote by either α(n) or
αn, whichever is more convenient.

We endow A with the discrete topology. The product topology on these spaces
has a convenient characterization. Given a set A, let A<N be the sets of all finite
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binary sequences over A. Given σ,τ ∈ AN, we write σ ⊂ τ to indicate that σ is
an initial segment of τ. ⊂ means the initial segment is proper. This notation
extends naturally to hold between elements of 2<NA and AN, σ ⊂ α meaning
that σ is a finite initial segment of α.

A basis for the product topology on AN is given by the cylinder sets

Nσ = {α ∈ AN : σ ⊂ α},

that is, the set of all infinite sequences extending σ. The complement of a
cylinder is a finite union of cylinders and hence open. Therefore, each set Nσ is
clopen.

A compatible metric is given by

d(α,β) =

¨

2−N where N is least such that αN 6= βN

0 if α= β .

The representation of the topology via cylinders (which are characterized by
finitary objects) allows for a combinatorial treatment of many questions and will
be essential later on.

Proposition 2.3 (Topological properties of AN): Let A be a countable set, equipped
with the discrete topology. Suppose AN is equipped with the product topology. Then
the following hold.

1) AN is Polish.

2) AN is zero-dimensional, i.e. it has a basis of clopen sets.

3) AN is compact if and only if A is finite.

Via the mapping

α 7→
∞
∑

i=0

2αi

3i+1
,

2N is homeomorphic to the middle-third Cantor set in R, whereas the continued
fraction mapping

β 7→ β0 +
1

β1 +
1

β2 +
1

β3 + . . .

provides a homeomorphism between NN and the irrational real numbers.
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The universal role played by the discrete product spaces is manifested in the
following results.

Theorem 2.4: Every uncountable Polish space contains a homeomorphic embed-
ding of the Cantor space, 2N.

The proof is similar to the proof of Theorem 1.1. Note that the proof actually
constructs an embedding of 2N. The continuity of the mapping is straightforward.

In a similar way we can adapt the proof of Theorem 1.2 to show that the prefect
subset property holds for closed subsets of Polish spaces.

Theorem 2.5 (Cantor-Bendixson Theorem for Polish spaces): Every uncountable
closed subset of a Polish space contains a perfect subset.

Finally, we can characterize Polish spaces as continuous images of Baire space.

Theorem 2.6: Every Polish space X is the continuous image of the Baire space,
NN.

Proof. Let d be a compatible metric on X , and let D = {x i : i ∈ N} be a countable
dense subset of X . Every point in X is the limit of a sequence in D. Define a
mapping g : NN→ X by putting

α= α(0)α(1)α(2) · · · 7→ lim
n

xα(n).

The problem is, of course, that the limit on the right hand side not necessarily
exists. Besides, even if it exists, the mapping may not be continuous at that
point, since we made no additional assumptions about the set D.

To remedy the situation, we proceed more carefully. Given α ∈ N, we define
iteratively yα0 = xα(0) and

yαn+1 =

¨

xα(n+1) if d(yαn , xα(n+1))< 2−n,

yαn otherwise .

The resulting sequence (yαn ) is clearly Cauchy in X , and hence converges to some
point yα ∈ X , by completeness. We define

f (α) = yα.

f is continuous, since if α and β agree up to length N (that is, their distance
is at most 2−N with respect to the above metric), then the sequences (yαn ) and
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(yβn ) will agree up to index N , and all further terms are within 2−N of yαN and

yβN , respectively.

Finally, since D is dense in X , f is a surjection.
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Lecture 3: Excursion – The Urysohn Space

Recall that a mapping e : X → Y between two metric spaces (X , dX ) and (Y, dY )
is an isometry if

dY ( f (x), f (y)) = dX (x , y) for all x , y ∈ X ,

that is, an isometry is a mapping that preserves distances. f is also called an
isometric embedding of X into Y . X and Y are isometric if there exists a bijective
isometry between them.

It is a remarkable fact that there exists a “universal” Polish space – a complete,
separable metric space that contains an isometric copy of any other Polish metric
space.

Theorem 3.1: There exists a Polish metric space U such that every Polish metric
space isometrically embeds into U.

A concrete example of such a space is C[0,1], the set of all continuous real-
valued functions on [0,1] with the sup-metric (see exercises). But this space
is not quite what we have in mind. There exists another space with a stronger,
more “intrinsic” universality property, Urysohn space. It was constructed by
(author?) [Ury27].

The construction features an amalgamation principle that has surfaced in other
areas like model theory or graph theory. It has recently attracted increased
attention, which has also led to renewed interest in the Urysohn space.

Extensions of finite isometries and Urysohn universality

We first sketch the basic idea for constructing the Urysohn space. Suppose X is a
Polish metric space. Let D = {x1, x2, . . . } be a countable, dense subset. We first
observe that it is sufficient to isometrically embed D into U.

Lemma 3.2: If Y is Polish, then any isometric embedding e of D into Y extends to
an isometric embedding e∗ of X into Y .

Proof. Given z ∈ X , let (x in) be a sequence in D converging to z. Since (x in)
converges, it is Cauchy. e is an isometry, and thus yn := e(x in) is Cauchy,
and since Y is Polish, (yn) converges to some y ∈ Y . Put e∗(z) = y. To see
that this mapping is well-defined, let (x jn) be another sequence with x jn → z.
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Then d(x in , x jn)→ 0, and hence d(e(x in), e(x jn) = d(yn, e(x jn))→ 0, implying
e(x jn) → y. Furthermore, suppose w = lim xkn

is another point in X . Then
(since a metric is a continuous mapping from Y × Y → R)

d(e ∗ (z), e∗(w)) = lim d(e(x in), e(xkn
)) = lim d(x in , xkn

) = d(z, w).

Thus e∗ is an isometry.

In order to embed D, we can now exploit the inductive structure of N and reduce
the task to extending finite isometries.

Suppose we have constructed an isometry e between FN = {x1, . . . , xN} ⊂ D and
U. We would like to extend the isometry to include xN+1. For this we have to
find an element y ∈ U such that for all i ≤ N

dU(y, e(x i)) = dX (xN+1, x i).

This extension property gives rise to the following definition.

Definition 3.3: A Polish space (U, dU) is Urysohn universal if for every finite
subspace F ⊂ U and any extension F∗ = F t {x∗} with metric d∗ such that

d∗|X×X = dU,

there exists a point u ∈ U such that

dU(u, x) = d∗(x∗, x) for all x ∈ F .

One can show that any two Urysohn universal spaces are isometric. We will
show here that this unique (up to isometry) space actually exists, the Urysohn
space U.

The extension property also implies a strong intrinsic extension property for the
Urysohn space itself.

Proposition 3.4: Let U be a separable and complete metric space that contains
an isometric image of every separable metric space. Then U is Urysohn universal if
and only if every isometry between finite subsets of U extends to an isometry of U
onto itself.
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Constructing the Urysohn space – a first approximation

We first give a construction of a space that has the extension property, but is not
Polish. After that we will take additional steps to turn it into a Polish space.

The crucial idea is to observe that if X is a metric space and x ∈ X , then the
mapping fx : X → R≥0 given by

fx(y) = dX (x , y)

is 1-Lipschitz. Recall that a function g between metric spaces X and Y is L-
Lipschitz, L > 0 if for every x , y ∈ X ,

d(g(x), g(y))≤ L d(x , y).

Let Lip1(X ) be the set of 1-Lipschitz mappings from X to R. We endow Lip1(X )
with the supremum metric

d( f , g) = sup{| f (x)− g(x)|: x ∈ X }.

If diam(X )≤ d and f , g are 1-Lipschitz, then d( f , g) is indeed finite. However,
we will need that the resulting space is also bounded. Let Lipd

1(X ) be the space
of all 1-Lipschitz functions from X to [0,d]. Clearly, diam(Lipd

1(X ))≤ d.

With this metric, the mapping x 7→ fx(y) = d(x , y) becomes an isometry: We
have

d( fx , fz) = sup{|d(x , y)− d(z, y)|: y ∈ X }.

By the reverse triangle inequality, this is always ≤ d(x , z). On the other hand,
setting z = x yields d( fx , fz) ≥ d(x , z). This embedding of X into Lipd

1(X ) is
called the Kuratowski embedding.

We use this fact as follows: If X ∗ = X t {x∗} and d∗ is an extension of dX , then
fx∗ is an element of Lipd

1(X ), and as above, for any x ∈ X

d( fx∗ , fx) = d∗(x∗, x).

Hence Lipd
1(X ) has an extension property of the kind we are looking for.

Iterative construction: Let X0 be any non-empty Polish space with finite diameter
d > 0. Given Xn, let d(n) = diam(Xn) and set Xn+1 = Lip2d(n)

1 (Xn). Finally, put
X∞ =

⋃

n Xn. Note that X∞ inherits a well-defined metric d from the Xn, which
embed isometrically into it.
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We claim that X∞ has the extension property needed to be Urysohn universal.
Let F be a finite subset of X∞. There exists N such that F ⊂ XN . Suppose
F∗ = F t {x∗} and d∗ is an extension of d to F∗. Let d∗ = diam(F∗). Note
that diam(Xn) = 2nd. Choose M so that M ≥ N and diam(XM )≥ d∗. The next
lemma ensures that we can find f ∈ XM+1 such that f (x) = d∗(x∗, x) for all
x ∈ F .

Lemma 3.5 (McShane-Whitney): Let X be a metric space with diam(X ) ≤ d,
A⊆ X , and f ∈ Lipd

1(A), then f can be extended to an 1-Lipschitz function f ∗ on
all of X such that

f ∗|A = f and f ∗ ∈ Lip2d
1 (X ).

Proof. For each a ∈ A define fa : X → R as

fa(x) = f (a) + d(a, x).

Then fa is 1-Lipschitz, by the reverse triangle inequality. Let

f ∗(x) = inf{ fa(x): a ∈ A}.

Then f ∗(a) = f (a) for all a ∈ A. Let x , y ∈ X and ε > 0. Wlog assume
f ∗(y)≥ f ∗(x). Pick a ∈ A so that fa(x)≤ f ∗(x) + ε. Then

| f ∗(x)− f ∗(y)|= f ∗(y)− f ∗(x)≤ f ∗(y)− fa(x) + ε

≤ fa(y)− fa(x) + ε ≤ Ld(x , y) + ε.

Since ε > 0 was arbitrary, we have | f ∗(x)− f ∗(y)| ≤ Ld(x , y).

Finally, we have f (a)≤ fa(x)≤ f (a) + d and thus 0≤ f ∗(x)≤ fa(x)≤ 2d.

Mending the construction

The set X∞ we constructed has two deficiencies with respect to our goal of
constructing a Urysohn universal space: X∞ is not necessarily separable, and
X∞ is not necessarily complete.

To make X∞ separable, we observe that if X is compact, then the set Lipd
1(X ) is

closed in C(X ) (the set of all real-valued continuous functions on X ), bounded,
and equicontinuous. By the Arzelà-Ascoli Theorem, Lipd

1(X ) is compact. Every
compact metric space is separable: For every ε > 0, there exists a finite covering
of the space with sets of diam< ε. Letting ε traverse all positive rationals and
picking a point from each set in an ε-covering yields a countable dense subset.
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Hence if we start with X0 compact, each Xn will be compact, too. A countable
union of separable spaces is separable, thus X∞ is separable.

To obtain a complete space, we can pass from X∞ to its completion X∞. First
note that if a metric space X is separable, so is its completion X . However, we
also have to ensure that X∞ retains the universality property of X∞.

Lemma 3.6: If a complete metric space (Y, d) admits a dense Urysohn universal
subspace U, then Y is Urysohn universal.

Proof. We follow (author?) [Gro99]. Let F = {x1, . . . , xn} ⊂ Y and assume
F∗ = F t {x∗} is an extension with metric d∗.

We first note that Y is aproximately universal. This means that for any ε > 0,
there exists a point y∗ ∈ Y such that

|d(y∗, x)− d∗(x∗, x)|< ε for all x ∈ F . (∗)

This can be seen as follows. Since U is dense in Y , we can find a finite set
Fε = {z1, . . . , zn} ⊂ U such that

d(x i , zi)< ε for 1≤ i ≤ n.

To keep the proof technically simple, wlog we assume ε is much smaller than
the individual distances between the x i . Consider the extension F∗ε = Fε t {x∗}
with metric

e∗(x∗, zi) = d∗(x∗, x i) + d(x i , zi).

Since U has the finite extension property, we can find y∗ ∈ U such that

d(y∗, zi) = e∗(x∗, zi)

Hence

|d(y∗, x i)− d∗(x∗, x i)|= |e∗(x∗, zi)− d∗(x∗, x i)|
= |d∗(x∗, x i) + d(x i , zi)− d∗(x∗, x i)|< ε.

We use this approximate universality to construct a Cauchy sequence (yk) in Y
of ‘approximate’ extension points that satisfy (∗) for smaller and smaller ε.

Let 0 < δ = max{d∗(x∗, x i): 1 ≤ i ≤ n}. The formal requirements for the
sequence (yi) are as follows.

(i) |d(yk, x i)− d∗(x∗, x i)| ≤ 2−kδ.
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(ii) d(xk+1, xk)≤ 2−kδ.

The sequence necessarily converges in Y and the limit point must be a true
extension point, due to (i).

Suppose we have already constructed y1, . . . , yk satisfying (i), (ii). Add an
(abstract) point y∗k+1 to Fk = F ∪ {y1, . . . , yk}. Let F∗k+1 = Fk t {y∗k+1}.

We want to use approximate universality on F∗k+1. To this end we have to define
a metric e∗ on F∗k+1 that has the following properties

e∗|Fk
= d|Fk

(+)

e∗(y∗k+1, x i) = d∗(x∗, x i) (1≤ i ≤ n) (++)

e∗(y∗k+1, yk) = 2−k−1δ (+++)

Indeed such a metric exists: The condition (+) already defines a metric on the
set Fk. (+)-(+++) also define a metric on F ∪ {yk, y∗k+1}. The only thing left to
check for this is the triangle inequality for yk, y∗k+1.

|e∗(x i , yk)− e∗(y∗k+1, x i)|= |d(x i , yk)− d∗(x∗, x i)| ≤ 2−kδ = e∗(yk, y∗k+1),

by (i). These metrics agree on the set

Fk ∩ (F ∪ {yk, y∗k+1}) = F ∪ {yk}.

Therefore, we can “merge” them to a metric on all of F∗k+1 by letting

e∗(y∗k+1, y j) = inf{e∗(y∗k+1, z) + e∗(z, y j): z ∈ {y1, . . . , yk−1}}.

Now choose ε < 2−k−1δ and apply approximate universality to F∗k+1. This yields
a point yk+1 ∈ Y such that

|d(yk+1, z)− e∗(y∗k+1, z)|< 2−k−1δ

for all z ∈ Fk. By definition of e∗, we have

|d(yk+1, x i)− d∗(y∗k+1, z)|< 2−k−1δ

for 1≤ i ≤ n, and (+++) yields

d(yk+1, yk)< e∗(y∗k+1, yk) + ε ≤ 2−k−1δ+ 2−k−1δ = 2−kδ

as required.
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Lecture 4: Trees

Let A be a set. The set of all finite sequences over A is denoted by A<N.

Definition 4.1: A tree on A is a set T ⊆ A<N that is closed under prefixes, that is

∀σ,τ [τ ∈ T &σ ⊆ τ ⇒ σ ∈ T]

We call the elements of T nodes.

A sequence α ∈ AN is a infinite path through or infinite branch of T if for all
n, α |n= (α0,α1, . . . ,αn−1) ∈ T . We denote the set of infinite paths through T
by [T].

An important criterion for a tree to have infinite paths is the following.

Theorem 4.2 (König’s Lemma): If T is finite branching, i.e. each node has at
most finitely many immediate extensions, then

T infinite ⇒ T has an infinite path.

Proof sketch. We construct an infinite path inductively. Let Tσ denote the tree
“above” σ, i.e. Tσ = {τ ∈ A<N : σ_τ ∈ T}. If T is finite branching, by the
pigeonhole principle, at least one of the sets Tσ for |σ| = 1 must be infinite.
Pick such a σ and let α |1= σ. Repeat the argument for T = Tσ and continue
inductively. This yields a sequence α ∈ [T].

If [T] = ;, we call T well-founded. The motivation behind this is that T is
well-founded if and only if the inverse prefix relation

σ � τ :⇔ σ ⊇ τ

is well-founded, i.e. it does not have an infinite descending chain.

If T 6= ; is well-founded, we can assign T an ordinal number, its rank ρ(T ).

• If σ is a terminal node, i.e. σ has no extensions in T , then let ρT (σ) = 0.

• If σ is not terminal, and ρT (τ) has been defined for all τ ⊃ σ, we set
ρT (σ) = sup{ρT (τ) + 1: τ ∈ T,τ ⊃ σ}.

• Finally, set ρ(T) = sup{ρT (σ) + 1: σ ∈ T} = ρT (〈∅〉) + 1, where 〈∅〉
denotes the empty string.
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Orderings on trees

If A itself is linearly ordered, we can extend the inverse prefix ordering to a
total ordering on A<N So suppose ≤ is a linear ordering of A. The (partial)
lexicographical ordering ≤lex of A<N is defined as

σ ≤lex τ iff σ = τ or ∃i <min{|σ|, |τ|}, [(∀ j < i)σ j = τ j &σi < τi]

This ordering extends to AN in a natural way.

Proposition 4.3: If ≤ is a well-ordering of A and T is a tree on A with [T] 6= ;,
then [T] has a ≤lex-minimal element, the leftmost branch.

Proof. We prune the tree T by deleting any node that is not on an infinite branch.
This yields a subtree T ′ ⊆ T with [T ′] = [T]. Let T ′n = {σ ∈ T ′ : |σ|= n}. Since
≤ is a well-ordering on A, T ′1 must have a ≤lex-least element. Denote it by α |1.
Since T ′ is pruned, α |1 must have an extension in T , and we can repeat the
argument to obtain α |2. Continuing inductively, we define an infinite path α
through T ′, and it is straightforward to check that α is a ≤lex-minimal element
of [T ′] and hence of [T].

We can combine the ≤lex-ordering with the inverse prefix order to obtain a linear
ordering of A<N. This ordering has the nice property that if A is well-ordered
and T is well-founded, then the ordering restricted to T is a well-ordering.

Definition 4.4: The Kleene-Brouwer ordering≤KB of A<N is defined as follows.

σ ≤KB τ iff σ ⊇ τ or σ ≤lex τ

This means σ is smaller than τ if it is a proper extension of τ or “to the left” of
τ.

We now have

Proposition 4.5: Assume (A,≤) is a well-ordered set. Then for any tree T on A,

T is well-founded ⇔ ≤KB restricted to T is a well-ordering.

Proof. Suppose T is not well-founded. Let α ∈ [T]. Then α |0,α |1, . . . is an
infinite descending sequence with respect to ≤KB.

Conversely, suppose σ0 >KB σ1 >KB . . . is an infinite descending sequence on
T . Then σ1(0) ≥ σ2(0) ≥ . . . as a sequence in A. Since A is well-ordered, this
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sequence must eventually be constant, say σn(0) = a0 for all n ≥ n0. Since
the σn are descending, by the definition of ≤KB it follows that |σn| ≥ 2 for
n > n0. Hence we can consider the sequence σn0+1(1) ≥ σn0+2(1) ≥ . . . in A.
Again, this must be constant = a1 eventually. Inductively, we obtain a sequence
α= (a0, a1, a2, . . . ) ∈ [T], i.e. T is not well-founded.

Note however that the order type of a well-founded tree under ≤KB is not the
same as its rank ρ(T ).

Of course we can also define an ordering on A<N via an injective mapping from
A<N to some linearly ordered set A. We will use this repeatedly for the case
A= N and A= {0,1}.

For A= N, we can use the standard coding mapping

π : (a0, a1, . . . , an) 7→ pa0+1
0 pa1

1 · · · p
an
n ,

where pk is the kth prime number. This embeds N<N into N, and we can well-
order N<N by letting σ < τ if and only if π(σ)< π(τ).

For A= {0, 1} we set

π : (b0, b1, . . . , bn) 7→
n
∑

i=0

2bi .

These two embedding allows us henceforth to see trees as subsets of the natural
numbers. If we optimize the coding suitably, we can make it onto, and henceforth
also assume that every subset of N codes a tree (on {0, 1} or N, depending on the
circumstances). This will be an important component in exploring the relation
between topological and arithmetical complexity.

Trees and closed sets

Let A be a set with the discrete topology. Consider AN with the product topology
defined in Lecture 2.

Proposition 4.6: A set F ⊆ AN is closed if and only if there exists a tree T on A
such that F = [T].

Proof. Suppose F is closed. Let

TF = {σ ∈ A<N : σ ⊂ α for some α ∈ F}.
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Then clearly F ⊂ [TF ]. Suppose α ∈ [TF ]. This means for any n, α |n∈ TF , which
implies that there exists βn ∈ F such that αn ⊂ βn. The sequence (βn) converges
to α, and since F is closed, α ∈ F .

For the other direction, suppose F = [T]. Let α ∈ AN \ F . Then there exists an
n such that α |n 6∈ T . Since a tree is closed under prefixes, since implies that
no extension of α |n can be in T . This in turn implies Nα|n ⊆ AN \ F , and hence
AN \ F is open.

Trees and continuous mappings

Let f : AN→ AN be continuous. We define a mapping ϕ : A<N→ A<N by setting

ϕ(σ) = the longest τ such that Nσ ⊆ f −1(Nτ).

This mapping has the following properties:

(1) It is monotone, i.e. σ ⊆ τ implies ϕ(σ) ⊆ ϕ(τ).

(2) For any α ∈ AN we have limn |ϕ(α |n)| =∞. This follows directly from
the continuity of f : For any neighborhood Nτ of f (α) there exists a
neighborhood Nσ of α such that f (Nσ) ⊆ Nτ. But τ has to be of the form
τ= f (α) |m, and σ of the form α |n. Hence for any m there must exist an
n such that ϕ(α |n) ⊇ f (α) |m.

On the other hand, if a function ϕ : A<N→ A<N satisfies (1) and (2), it induces
a function ϕ∗ : AN→ AN by letting

ϕ∗(α) = lim
n
ϕ(α |n) = the unique sequence extending all ϕ(α |n).

This ϕ∗ is indeed continuous: The preimage of Nτ under ϕ∗ is given by

(ϕ∗)−1(Nτ) =
⋃

{Nσ : ϕ(σ) ⊇ τ},

which is an open set.

We have shown

Proposition 4.7: A mapping f : AN→ AN is continuous if and only if there exists
a mapping ϕ satisfying (1) and (2) such that f = ϕ∗.

Again, note that we can completely describe a topological concept, continuity,
through a relation between finite strings.
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Lecture 5: Borel Sets

Topologically, the Borel sets in a topological space are theσ-algebra generated by
the open sets. One can build up the Borel sets from the open sets by iterating the
operations of complementation and taking countable unions. This generates sets
that are more and more complicated, which is refelcted in the Borel hierarchy.
The complexity is reflected on the logical side by the number of quantifier changes
needed to define the set. There is a close connection between the arithmetical
and the Borel hierarchy.

Definition 5.1: Let X be a set. A σ-algebra S on X is a collection of subsets of
X such that S is closed under complements and countable unions, that is

• if A∈ S, then X \ A∈ S, and

• if (An)n∈N is a sequence of sets in S, then
⋃

n An ∈ S,

If the enveloping space X is clear, we use ¬A to denote the complement of A in
X .

It is easy to derive that aσ-algebra is also closed under the following set-theoretic
operations:

• Countable intersections – we have
⋂

An = ¬
⋃

n¬An.

• Differences – we have A\ B = A∩¬B.

• Symmetric differences – we have A4 B = (A∩¬B)∪ (¬A∩ B).

Definition 5.2: Let (X ,O) be a topological space. The collection of Borel sets
in X is the smallest σ-algebra containing the open sets in O.

One, of course, has to make sure that this collection actually exists. For this,
note that the intersection of any collection of σ-algebras is again a σ-algebra,
so the Borel sets are just the intersection of all σ-algebras containing O. (Note
the the full power set of X is such a σ-algebras, so we are not taking an empty
intersection.)

This definition of Borel sets is rather “external”. It does not give us any idea
what Borel sets look like. One can arrive at the family of Borel sets also through
a construction from “within”. This reveals more structure and gives rise to the
Borel hierarchy.
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The Borel hierarchy

We will restrict ourselves from now on to Polish spaces, to ensure that every
closed set is a countable intersection of open sets (see exercises).

To generate the Borel sets, we start with the open sets. By closing under com-
plements, we obtain the closed sets. We also have to close under countable
unions. The open sets are already closed under this operation, but the closed
sets are not. Countable unions of closed sets are classically known as Fσ sets.
Their complements, i.e. countable intersections of open sets, are the Gδ sets. We
can continue this way and form the Fσδ sets – countable intersections of Fσ
sets – the Gδσ sets – countable unions of Gδ sets – and so on. It is obvious that
the σδ-notation soon becomes rather impractical, and hence we replace it by
something much more convenient, and much more suggestive, as we will see
later.

Definition 5.3 (Borel sets of finite order): Let X be a Polish space. We inductively
define the following collection of subsets of X .

ΣΣΣ0
1(X ) = {U : U ⊆ X open }

ΠΠΠ0
n(X ) = {¬A: A∈ΣΣΣ0

n(X )}= ¬ΣΣΣ
0
n(X )

ΣΣΣ0
n+1(X ) = {

⋃

k

Ak : Ak ∈ΠΠΠ0
n(X )}

Hence the open sets are precisely the sets in ΣΣΣ0
1, the closed sets are the sets in

ΠΠΠ0
1, the Fσ sets from the class ΣΣΣ0

2 etc. If it is clear what the underlying space X
is, we drop the reference to it and simply write ΣΣΣ0

n and ΠΠΠ0
n. Besides, we will say

that a set A⊆ X is (or is not) ΣΣΣ0
n or ΠΠΠ0

n, respectively.

Does the collection of all ΣΣΣ0
n and ΠΠΠ0

n exhaust the Borel sets of X? We will see
that the answer is no. We have to extend our inductive construction into the
transfinite and consider classes ΣΣΣ0

ξ
, where ξ is a countable infinite ordinal.

The Borel sets of finite order

We fix a Polish space X . We want to establish the basic relationships between
the different classes ΣΣΣ0

n and ΠΠΠ0
m for X .

It is clear thatΣΣΣ0
1 *ΠΠΠ0

1 andΠΠΠ0
1 *ΣΣΣ0

1. Furthermore, it follows from the definitions
that ΠΠΠ0

n ⊆ΣΣΣ
0
n+1 and ΣΣΣ0

n ⊆ΠΠΠn+1.
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Lemma 5.4: In a Polish metric space (X , d), every open set is an Fσ set.

Proof. Let D = {x1, x2, . . . } ⊆ X be a countable dense subset, and assume U ⊆ X
is open. For any ε > 0, if δ < ε, then Uδ(x) ⊆ Uε(x) for any x ∈ X . Let
x i(1), x i(2), . . . and ε1,ε2, . . . be such that

U =
⋃

n
Uεn
(x i(n)).

For each n ≥ 1, let (δ(n)k ) be such that δ(n)k < δ
(n)
k+1 < · · · < εi, and δ(n)k → εn.

Then
U =

⋃

k

⋃

n
U
δ
(n)
k
(x i(n)).

The set on the right hand side is a countable union of closed sets.

Corollary 5.5: ΣΣΣ0
1 ⊆ΣΣΣ

0
2 and ΠΠΠ0

1 ⊆ΠΠΠ
0
2.

The second statement follows by passing to complements: If F is closed,

F = ¬¬ F = ¬
⋃

Fn =
⋃

¬ Fn,

where the Fn are closed.

There are also sets that can be both ΣΣΣ0
2 and ΠΠΠ0

2, but neither ΣΣΣ0
1 nor ΠΠΠ0

1. For
example, consider the half-open interval [0, 1).

[0, 1) =
⋃

n
[1, 1− 1/n] =

⋂

m
(−1/n, 1).

Therefore, it makes sense to define the hybrid classes

∆∆∆0
n =ΣΣΣ

0
n ∩ΠΠΠ

0
n.

Using induction, we can extend the inclusions in a straightforward way to higher
n.

Theorem 5.6 (Weak Hierarchy Theorem):

∆∆∆0
1 ∆∆∆0

2 ∆∆∆0
3

· · ·
⊆

⊆ ⊆

⊆ ⊆

⊆ ⊆

⊆ ⊆

⊆ ⊆

⊆

ΣΣΣ0
1 ΣΣΣ0

2 ΣΣΣ0
3

ΠΠΠ0
1 ΠΠΠ0

2 ΠΠΠ0
3
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We also want show that the inclusions are proper. For the first two levels, this
can be done by explicit counterexamples. Any countable set is in ΣΣΣ0

2, since a
singleton set is closed, and a countable set is a countable union of singletons.
However, there are countable sets that are neither open nor closed, e.g. {1/n: n≥
1}. The complement is consequently a ΠΠΠ0

2 set that is neither open nor closed.
Furthermore, the rationals Q give an example of a ΣΣΣ0

2 set that is not ΠΠΠ0
2. This

will be shown later using the concept of Baire category.

It is much harder to find specific examples for the higher levels, e.g. a ΣΣΣ0
5 set

that is not ΣΣΣ0
4. This separation will be much facilitated by the introduction of a

logical/definability framework for the Borel sets. Therefore, we defer the proof
for a while.

Examples of Borel sets – Continuity points of functions

Theorem 5.7 (Young): Let f : X → Y be a mapping between Polish spaces. Then

C f = {x : f is continuous at x}

is a ΠΠΠ0
2 (i.e. Gδ) set.

Proof. It is not hard to see that f is continuous at a if and only if for any ε > 0,

∃δ > 0∀x , y [x , y ∈ Uδ(a) ⇒ d( f (x), f (y))< ε]. (∗)

Given ε > 0, let
Cε = {a : (∗) holds at a for ε}.

We claim that Cε is open. Suppose a ∈ Cε. Choose a suitable δ that witnesses that
a ∈ Cε. We show Uδ(a) ⊆ Cε. Let b ∈ Uδ(a). Choose δ∗ so that Uδ∗(b) ⊆ Uδ(a).
Then

x , y ∈ Uδ∗(b) ⇒ x , y ∈ Uδ(a) ⇒ d( f (x), f (y))< ε.

Notice further that ε > ε∗ implies Cε ⊇ Cε∗ . Hence we can represent C f as

C f =
⋂

n∈N
C1/n,

a countable intersection of open sets.
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The function f : R→ R given by

f (x) =











1 x irrational,

0 x = 0,

1/q x = p/q, p ∈ Z, q ∈ Z>0, p, q relatively prime

is a function that is continuous at every irrational, discontinuous at every rational
number. As noted above, the rationals are a ΣΣΣ0

2 set that is not ΠΠΠ0
2. Hence there

cannot exist a function g : R→ R that is discontinuous at exactly the irrationals.

We finish this lecture by showing that Young’s Theorem can be reversed.

Theorem 5.8: Given a ΠΠΠ0
2 subset A of a perfect Polish space X , there exists a

mapping f : X → R such that f is continuous at every point in A, and discontinuous
at every other point, i.e. C f = A.

Proof. Fix a countable dense subset D ⊆ X . We first deal with the easier case
that A is open. Let

f (x) =

¨

0 x ∈ A or x ∈ ¬ A∩ D,

1 otherwise.

It is clear that f is continuous on A. Now assume x 6∈ A. If x 6∈ A, then there
exists Uε(x) ⊆ ¬ A. Any Uε∗(x) ⊆ Uε(x) contains points from both D and ¬D,
so it is clear that f is not continuous at x . Finally, let x ∈ ¬A\A. Then f (x) = 1,
but points of A are arbitrarily close, where f takes value 0.

Now we extend this approach to general ΠΠΠ0
2 sets. Suppose

A=
⋂

n
Gn, Gn open.

By replacing Gn with G∗n = G1 ∩ · · · ∩ Gn, we can assume that

X = G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ . . .

The idea is to define fn as above for each Gn and then “amalgamate” the fn is
a suitable way. Assume for each n, fn : X → R is defined as above such that
C fn
= Gn. Let (bn) be a sequence of positive real numbers such that for all n,

bn >
∑

k>n

bk,
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for example, bn = 1/n!. We now form the series

f (x) =
∑

n

bn fn(x).

Since | fn(x)| ≤ 1, | f (x)| ≤
∑

n bn <∞. Furthermore, ( fn) converges uniformly
to f , for

| f (x)− fn(x)| ≤
∑

k>n

bk < bn,

and the last bound is independent of x and converges to 0.

It follows by uniform convergence that if each fn is continuous at x , f is contin-
uous on x , too. Hence f is continuous on A.

Now assume x 6∈ A. Then there exist n such that x ∈ Gn \ Gn+1. Hence

f0(x) = · · ·= fn(x) = 0.

Again, we distinguish two cases. First, assume x 6∈ Gn+1. Then there exists
δ > 0 such that Uδ(x) ⊆ ¬Gn+1. This also implies Uδ(x) ⊆ ¬Gk for any
k ≥ n+ 1. Besides, since Gn is open, we can chose δ sufficiently small so that
Uδ(x) ⊆ Gn. For y ∈ ¬D∩Uδ(x) we have fk(y) = 1 for all k ≥ n+1, and hence
f (y) =

∑

k>n bk fk(y)> 0. On the other hand, if y ∈ D ∩ Uδ(x), then fk(y) = 0
for all k ≥ n + 1, and also f0(y) = · · · = fn(y) = 0, since y ∈ Gn, and thus
f (y) = 0. Hence there are points arbitrarily close to x whose f -values differ by
a constant lower bound, which implies f is not continuous in x .

Finally, suppose x ∈ Gn+1. Then fn+1(x) = 1 and hence f (x) ≥ bn+1 > 0. On
the other hand, for any y ∈ Gn+1, f (y) ≤

∑

k>n+1 bk < bn+1 = f (x). That
is, there are points arbitrarily close to x whose f -value differs from f (x) by a
constant lower bound. Hence f is discontinuous at x in this case, too.
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Lecture 6: Borel Sets as Clopen Sets

In this lecture we will learn that the Borel sets have the perfect subset property,
which we already saw holds for closed subsets of Polish spaces.

The proof changes the underlying topology so that all Borel sets become clopen,
and hence we can apply the Cantor-Bendixson Theorem 2.5.

We start by showing that topologically simple subspaces of Polish spaces are
again Polish

Proposition 6.1: If Y is an open or closed subset of a Polish space X , then Y is
Polish, too (with respect to the subspace topology).

Proof. Clearly subspaces of separable spaces are separable.

The statement for closed sets follows easily, since closed subsets of complete
metric spaces are complete.

In case Y is open, suppose d is a compatible metric on X such that (X , d) is
complete. Y may not be complete with respect to d, so we have to change the
metric, but be careful not to change the induced topology.

First, replace the metric d by d, given as

d(x , y) =
d(x , y)

1+ d(x , y)
.

This is again a metric, and it induces the same topology, for one can show that
the identity mapping is a homeomorphism of (X , d) and (X , d).

Now define

dY (x , y) = d(x , y) +

�

�

�

�

�

1

d(x , X \ Y )
−

1

d(y, X \ Y )

�

�

�

�

�

,

where d(x , Z) = inf{d(x , z): z ∈ Z}. With some effort, one can show that this is
again a metric.

To show it is compatible with the subspace topology, assume xn→ z in (Y, dY ).
Since d ≤ dy , we have d(xn, z)→ 0, and hence xn→ z in (Y, d).
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On the other hand, if d(xn, z)→ 0 in Y , it follows that d(xn, z)→ 0. Furthermore,
using the triangle-inequality, we can show that the sequence

1

d(xn, X \ Y )
−

1

d(z, X \ Y )

also goes to zero. Hence xn→ z in (Y, dY ).

Finally, assume (xn) is Cauchy in (Y, dY ). Since d ≤ dY , it is also Cauchy in
(X , d), hence the exists x ∈ X with xn→ x . Using the triangle-inequality, one
can further show that the sequence

1

d(xn, X \ Y )

is Cauchy in R. Hence there exists r ∈ R such that

r = lim
n

1

d(xn, X \ Y )
.

Now, since d < 1, r cannot be 0, and hence

1

d(xn, X \ Y )

is bounded away from 0, which implies (triangle-inequality) that d(x , X \ Y )
is bounded away from 0, too. But this means x ∈ Y , hence (xn) converges in
(Y, dY ).

One can strengthen this result to Gδ sets, in fact, the Polish subspaces of Polish
spaces are precisely the Gδ subsets.

Theorem 6.2: A subset of a Polish space is Polish (with the subspace topology) if
and only if it is ΠΠΠ0

2.

For a proof see (author?) [Kec95].

Next we show that the topology can be refined to make closed subsets clopen.

Lemma 6.3: If X is a Polish space with topology O, and F ⊆ X is closed, then
there exists a finer topology O′ ⊇ O such that O and O′ give rise to the same class
of Borel sets in X , and F is clopen with respect to O′.
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Proof. By Proposition 6.1, F and X \ F are Polish spaces with compatible metrics
dF and dX\F , respectively. Wlog dF , dX\F < 1. We form the disjoint union of the
spaces F and X \ F : This is the set X = F t X \ F with the following topology O′.
U ⊆ F t X \ F is in O′ if and only if U ∩ F is open (in F) and U ∩ X \ F is open
(in X \ F).

The disjoint union is Polish, as witnessed by the following metric.

dt(x , y) =











dF (x , y) if x , y ∈ F,

dX\F (x , y) if x , y ∈ X \ F,

2 otherwise.

It is straightforward to check that d is compatible with O′. Furthermore, let (xn)
be Cauchy in (X , dt). Then the xn are completely in F or in X \ F from some
point on, and hence (xn) converges.

Under the disjoint union topology, F is is clopen. Moreover, an open set in this
topology is a disjoint union of an open set in X \ F , which also open the original
topology O, and an intersection of an open set from O with F . Such sets are are
Borel in (X ,O), hence (X ,O) and (X ,O′) have the same Borel sets.

Theorem 6.4: Let X be a Polish space with topology O, and suppose B ⊆ X is
Borel. Then there exists a finer topology O′ ⊇ O such that O and O′ give rise to the
same class of Borel sets in X , and F is clopen with respect to O′.

Proof. Let S be the family of all subsets A of X for which a finer topology exists
that has the same Borel sets as O and in which A is open.

We will show that S is a σ-algebra, which by the previous Lemma contains the
closed sets. Hence S must contain all Borel sets, and we are done.

S is clearly closed under complements, since the complement of a clopen set is
clopen in any topology.

So assume now that {An} is a countable family of sets in S. Let On be a topology
on X that makes An clopen and does not introduce new Borel sets.

Let O∞ be the topology generated by
⋃

n On. Then
⋃

n An is open in (X ,O∞),
and we can apply Lemma 6.3. For this to work, however, we have to show that
(X ,O∞) is Polish and does not introduce any new Borel sets.

We know that the product space
∏

(X ,On) is Polish. Consider the mapping
ϕ : X →

∏

n X
x 7→ (x , x , x , . . . ).
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Observe that ϕ is a continuous mapping between (X ,O∞) and
∏

n X . The
preimage of a basic open set U1 × U2 × · · · × Un × X × X × · · · under ϕ is just
the intersection of the Ui . Furthermore, ϕ is clearly one-to-one, and the inverse
mapping between ϕ(X ) and X is continuous, too.

If we can show that ϕ(X ) is closed in
∏

n X , we know it is Polish as a closed
subset of a Polish space, and since (X ,O∞) is homeomorphic to ϕ(X ), we can
conclude it is Polish.

To see that ϕ(X ) is closed in
∏

n X , let (y1, y2, y3, . . . ) ∈ ¬ϕ(X ). Then there
exist i < j such that yi 6= y j. Since (X ,O) is Polish, we can pick U , V open,
disjoint such that yi ∈ U , y j ∈ V . Since each On refines O, U is open in Oi , and
V is open in O j . Therefore,

X1 × X2 × · · · × X i−1 × U × X i+1 × · · · × X j1 × V × X j+1 × X j+2 × · · ·

where Xk = X for k 6= i, j, is an open neighborhood of (y1, y2, y3, . . . ) completely
contained in ¬ϕ(X ).

Finally, too see that the Borel sets of (X ,O∞) are the same as the ones of (X ,O),
for each n, let {U (n)i }i∈N be a basis for On. By assumption, all sets in On are

Borel sets of (X ,O). The set {U (n)i }i,n∈N is a subbasis for O∞. This means that

any open set in (X ,O∞) is a countable union of finite intersections of the U (n)i .

Since every U (n)i is Borel in (X ,O), this means that any open set in O∞ is Borel
in (X ,O). Since the Borel sets are closed under complementation and countable
unions, this in turn implies that very Borel set of (X ,O∞) is already Borel in
(X ,O).

Corollary 6.5 (Perfect subset property for Borel sets): In a Polish space, every
uncountable Borel set has a perfect subset.

Proof. Let (X ,O) be Polish, and assume B ⊆ X is Borel. We can choose a finer
topology O′ ⊇ O so that B becomes clopen, but the Borel sets stay the same. B
is Polish with respect to the subspace topology O′|B

By Theorem 2.4, there exists a continuous injection f from 2N (with respect to
the standard topology) into (B,O′|B). Since 2N is compact, f (2N) is closed in
(B,O′|B). Since O′ ⊇ O, every closed set in (B,O′|B) is also closed in O. Likewise,
f is continuous between 2N and (B,O|B), too. Therefore, f (2N) has no isolated
points with respect to O. It follows that f (2N) is perfect with respect to O.
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Lecture 7: Measure and Category

The Borel hierarchy classifies subsets of the reals by their topological complexity.
Another approach is to classify them by “size”.

Filters and Ideals

The most common measure of size is, of course, cardinality. In the presence of
uncountable sets (like in a perfect Polish space), the usual division is between
countable and uncountable sets. The smallness of the countable sets is reflected,
in particular, by two properties: A subset of a countable set is countable, and
countable unions of countable set are countable. These characteristics are shared
with other notions of smallness, two of which we will encounter in this lecture.

Definition 7.1: A non-empty family I ⊆ P(X ) of subsets of a given set X is an
ideal if

(I1) A∈ I and B ⊆ A implies B ∈ I,

(II2) A, B ∈ I implies A∪ B ∈ I.

If we have closure even under countable unions, we speak simply of a σ-ideal.
For example, while the countable sets in R form a σ-ideal, the finite subsets only
form an ideal.

Another example of ideals are the so-called principal ideals. These are ideals
of the form

〈Z〉= {A: A⊆ Z}

for a fixed Z ⊆ X .

The dual notion to an ideal is that of a filter. It reflects that the sets in a filter
share some largeness property.

Definition 7.2: A non-empty family F ⊆ P(X ) of subsets of a given set X is an
σ-filter if

(F1) A∈ F and B ⊇ A implies B ∈ F,

(F2) A, B ∈ F for all n implies A∩ B ∈ F.

Again, closure under countable intersection yields σ-filters.
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If I is a (σ-) ideal, then F = {¬A: A ∈ I} is a (σ-) filter. Hence the co-finite
subsets of R form a filter, and the co-countable subsets form a σ-filter.

Note that the complement of a (σ-) ideal (in P(X )) is not necessarily a (σ-)
filter. This is true, however, for a special class of ideals/filters.

Definition 7.3: A non-empty family I ⊆ P(X ) is a prime ideal if it is an ideal
for which

for every A∈ X , either A∈ I or ¬A∈ I.

An ultrafilter is a filter whose complement in P(X ) is a prime ideal.

In light of the small-/largeness motivation, prime ideals and ultrafilters provide
a complete separation of X : Each set is either small or large.

Measures

Coarsely speaking, a measure assigns a size to a set in a way that reflects our
basic geometric intuition about sizes: The size of the union of disjoint objects is
the sum of their sizes. The question whether this can be done in a consistent way
for all subsets of a given space is of fundamental importance and has motivated
many questions in set theory.

The formally, a measure µ on X is a [0,∞]-valued function defined on subsets
of X that satisfies

(M1) µ(;) = 0,

(M2) µ(
⋃

n An) =
∑

nµ(An), whenever the An are pairwise disjoint.

The question is, of course, which subsets of X can be assigned a measure.
The condition (M2) suggests that this family is closed under countable unions.
Furthermore, if A⊆ X , then the equation µ(X ) = µ(A)+µ(¬A) suggests that ¬A
should be measurable, too. In other words, the sets who are assigned a measure
form a σ-algebra.

Definition 7.4: A measurable space is a pair (X ,S), where X is a set and S

is a σ-algebra on X . A measure on a measurable space (X ,S) is a function
µ : S→ [0,∞] that satis fies (M1) and (M2) for any pairwise disjoint family
{An} in S. If µ is a measure on (X ,S), then the triple (X ,S,µ) is called a measure
space.
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If we want the measure µ to reflect also some other basic intuition about ge-
ometric sizes, this often puts restrictions on the σ-algebra of measurable sets.
For example, in R the measure of an interval should be its length. We will see
later (when we discuss the Axiom of Choice) that it is impossible to assign every
subset of R a measure, so that (M1) and (M2) are satisfied, and the measure of
an interval is its length.

To have some control over what the σ-algebra of measurable sets should be,
one can construct a measure more carefully, start with a measure on basic
objects such as intervals or balls, and then extend it to larger classes of sets by
approximation.

An essential component in this extension process is the concept of an outer
measure.

Definition 7.5: An outer measure on a set X is a function µ∗ : P(X )→ [0,∞]
such that

(O1) µ∗(;) = 0,

(O2) A⊆ B implies µ∗(A)≤ µ∗(B),

(O3) µ∗(
⋃

n An)≤
∑

nµ
∗(An), for any countable family {An} is X .

An outer measure hence weakens the conditions of additivity (M2) to subaddi-
tivity (O3). This makes it possible to have non-trivial outer measures that are
defined on all subsets of X .

The usefulness of outer measures lies in the fact that they can always be restricted
to subset of P(X ) on which they behave as measures.

Definition 7.6: Let µ∗ be an outer measure on X . A set A⊆ X is µ∗-measurable
if

µ∗(B) = µ∗(B ∩ A) +µ∗(B \ A) for all B ⊆ X .

This definition is a rather obscure. It is justified rather by its consequences
than its intuitive appeal. Regarding the latter, suffice it to say here that outer
measures may be rather far from being even finitely additive. The definition
singles out those sets that split all other sets correctly, with regard to measure.

Proposition 7.7: The class of µ∗-measurable sets forms a σ-algebra M, and the
restriction of µ∗ to M is a measure.

For a proof see for instance (author?) [Hal50].
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The size of the σ-algebra of measurable sets depends, of course, on the outer
measure µ∗. If µ∗ is behaving rather pathetically, we cannot expect M to contain
many sets.

Lebesgue measure

A standard way to obtain ‘nice’ outer measures is to start with a well-behaved
function defined on a certain class of sets, and then approximate. The paradigm
for this approach is the construction of Lebesgue measure on R.

Definition 7.8: The Lebesgue outer measure λ∗ of a set A⊆ R is defined as

λ∗(A) = inf

�

∑

n

|bn − an|: A⊆
⋃

n
(an, bn)

�

.

One can show that this indeed defines an outer measure. We call the λ∗-
measurable sets Lebesgue measurable. One can verify that every open interval
is Lebesgue measurable. It follows from Proposition 7.7 that every Borel set is
Lebesgue measurable.

The construction of Lebesgue measure can be generalized and extended to other
metric spaces, for example through the concept of Hausdorff measures.

All these measures are Borel measures, in the sense that the Borel measures
are measurable. However, there measurable sets that are not Borel sets. The
reason for this lies in the presence of nullsets, which are measure theoretically
‘easy’ (since they do not contribute any measure at all), but can be topologically
quite complicated.

Nullsets

Let µ∗ be an outer measure on X . If µ∗(A) = 0, then A is called a µ∗-nullset.

Proposition 7.9: Any µ∗-nullset is µ∗-measurable.

Proof. Suppose µ∗(A) = 0. Let B ⊆ X . Then, since µ∗ is subadditive and
monotone,

µ∗(B)≤ µ∗(B ∩ A) +µ∗(B ∩¬A) = µ∗(B ∩¬A)≤ µ∗(B),

and therefore µ∗(B) = µ∗(B ∩ A) +µ∗(B ∩¬A).
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The next result confirms the intuition that nullsets are a notion of smallness.

Proposition 7.10: The µ∗-nullsets form a σ-ideal.

Proof. (I1) follows directly from monotonicity (O2). Countable additivity follows
immediately from subadditivity (O3).

In case of Lebesgue measure, we can use Proposition 7.9 to further describe the
Lebesgue measurable subsets of R.

Proposition 7.11: A set A ⊆ R is Lebesgue measurable if and only if it is the
difference of a ΠΠΠ0

2 set and a nullset

Proof. We first assume λ∗(A)<∞. Let Gn ⊆ R be an open set such that Gn ⊇ A
and λ∗(Gn)≤ λ∗(A)+1/n. The existence of such a Gn follows from the definition
of λ∗, and the fact that every open set is the disjoint union of open intervals.
Then G =

⋂

n Gn is ΠΠΠ0
2, A⊆ G, and for all n,

λ∗(A)≤ λ∗(G)≤ λ∗(A) + 1/n

hence λ∗(A) = λ∗(G). Hence for N = G \ A, since A is measurable,

λ∗(N) = λ∗(G)−λ∗(A) = 0 and A= G \ N .

If λ∗(A) =∞, we set Am = A∩ [m, m+ 1) for m ∈ Z. By monotonicity, each
λ∗(Am) is finite. For each m ∈ Integer, n ∈ N, pick G(m)n open such that
λ∗(G(m)n )≤ λ∗(A) + 1/2n+2|m|+1. Then, with

⋂

n∈N

⋃

m∈Z
G(m)n ,

N = G \ A is the desired set.

For the other direction, note that the measurable sets form a σ-algebra which
contains both the Borel sets and the nullsets. Hence any set that is the difference
of a Borel set and a nullset is measurable, too.

One can also show that each Lebesgue measurable set can be written as a disjoint
union of a ΣΣΣ0

2 set and a nullset. Hence if a set is measurable, it differs from a
(rather simple) Borel set only by a nullset.

We also obtain the following characterization of the σ-algebra of Lebesgue
measurable sets.
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Proposition 7.12: The σ-algebra of Lebesgue measurable sets in R is the smallest
σ-algebra containing the open sets and the nullsets.

As mentioned before, there are Lebesgue measurable sets that are not Borel sets.
We will eventually encounter such sets. The question which sets exactly are
Lebesgue measurable was one of the major questions that drove the development
of set theory, just like the question which uncountable sets have perfect subsets.

Baire category

The basic paradigm for smallness here is of topological nature. A set is small
if it does not look anything like an open set, not even under closure. In the
following, let X be a Polish space.

Definition 7.13: A set A⊆ X is nowhere dense if its complement contains an
open, dense set.

That means for any open set U ⊆ X we can find a subset V ⊆ U such that V ⊆ ¬A.
In other words, a nowhere dense set is “full of holes” (Oxtoby).

Examples of nowhere dense sets are all finite, or more generally, all discrete
subsets of a perfect Polish space, i.e. sets all whose points are isolated. There
are non-discrete nowhere dense sets, such as {0} ∪ {1/n: n ∈ N} in R, even
uncountable ones, such as the middle-third Cantor set.

The nowhere dense sets form an ideal, but not a σ-ideal: Every singleton set is
nowhere dense, but there are countable sets that are not, such as the rationals
Q in R.

To obtain a σ-ideal, we close the nowhere dense sets under countable unions.

Definition 7.14: A set A⊆ X is meager or of first category if it is the countable
union of nowhere dense sets. Non-meager sets are also called sets of second
category. Complements of meager sets are called comeager or residual.

The meager subsets of X form a σ-ideal. Examples of meager sets are all
countable sets, but there are uncountable ones (Cantor set).

Baire category is often used in existence proofs: To show that a set with a
certain property exists, one shows that the set of points not having the property.
A famous example is Banach’s proof of the existence of continuous, nowhere
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differentiable functions. For this to work, of course, we have to ensure that the
complements of meagre sets are non-empty.

Theorem 7.15 (Baire Category Theorem): For any Polish space X , the following
statements hold.

(a) For every meager set M ⊆ X , the complement ¬M is dense in X .

(b) No open set is meager.

(c) If {Dn} is a countable family of open, dense sets, then
⋂

n Dn is dense.

Proof. (a) Assume M =
⋃

n Nn, where each Nn is nowhere dense. Then ¬M =
⋂

Dn, where each Dn contains a dense, open set. Let U ⊆ X be open. We
construct a point x ∈ U ∩ ¬M by induction. We can find an open ball B1 of
radius < 1 such that B1 ⊆ U ∩D1, since D1 contains a dense open set. In the next
step, we use the same property of D2 to find an open ball B2 of radius < 1/2
whose closure is completely contained in B1 ∩ D2. Continuing inductively, we
obtain a nested sequence of balls Bn of radius < 1/n such that Bn ⊆ Bn−1 ∩ Dn.
Let xn be the center of Bn. Then (xn) is a Cauchy sequence, so x = limn xn exists
in X . Since for any n, all but finitely many x i are in Bn, we have x ∈ Bn for all n.
Therefore, by construction

x ∈
⋂

n
Bn =

⋂

n
Bn ⊆ U ∩

⋂

n
Dn ⊆ U .

(b) follows immediately from (a), the proof of (c) is exactly the same as that for
(a). In fact, the three statements are equivalent.

As an application, we determine the exact location of Q in the Borel hierarchy
of R.

Corollary 7.16: Q is not a ΠΠΠ0
2 set, hence a true ΣΣΣ0

2 set.

Proof. Note that R cannot be meager, by (b). Since Q is meager, R \Q cannot
be meager either. If Q were a ΠΠΠ0

2 set, it would be the intersection of open, dense
sets and hence its complement R \Q would be meager.

We have seen that the measurable sets are precisely the ones that differ from a
ΠΠΠ0

2 set by a nullset. We can introduce a similar concept for Baire category.
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Definition 7.17: A set B ⊆ X has the Baire property if there exists an open set
G and a meager set M such that

B4 G = M .

The sets having the Baire property form a σ-algebra and hence include all Borel
sets. Similar to measure, one has

Proposition 7.18: The σ-algebra of sets having the Baire property is the smallest
σ-algebra containing all open and all meager sets.

As in the case of measure, there exist non-Borel sets with the Baire property, and
using the Axiom of Choice one can show that there exists set that do not have
the Baire property.

We conclude this lecture with a note on the relationship between measure and
category. From the results so far it seems that they behave quite similarly. This
might lead to the conjecture that maybe they more or less coincide. This is not
so, in fact, they are quite orthogonal to each other, as the next result shows.

Proposition 7.19: The real numbers can be partitioned into two subsets, one a
Lebesgue nullset and the other one meager.

Proof. Let (Gn) be a sequence of open sets witnessing that Q is a nullset, i.e.
each Gn is a union of disjoint open intervals that covers Q and whose total
length does not exceed 2−n. Then G =

⋂

n Gn is a nullset, but at the same time
it is an intersection of open dense sets, thus comeager, hence its complement is
meager.
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Lecture 8: The Axiom of Choice

In the previous lectures, a number of regularity principles for sets of real
numbers emerged.

(PS) The perfect subset property,

(LM) Lebesgue measurability,

(BP) the Baire property.

We have seen that the Borel sets in R have all these properties. In this lecture we
will show how to construct counterexamples for each of these principles. The
proofs make essential use if the Axiom of Choice:

(AC) Every set X of non-empty sets has a choice-function.

A choice function for X is a function f that assigns every set Y ∈ X an element
y ∈ Y .

One of the most famous applications of the Axiom of Choice is Vitali’s construction
of a non-Lebesgue measurable set.

Theorem 8.1 (Vitali): There exists a set A⊆ R that is not Lebesgue measurable.

Proof. Put
x ∼ y if and only if x − y ∈Q.

It is straightforward to check that this is an equivalence relation on R. Using a
choice function on the equivalence classes of ∼ intersected with the unit interval
[0,1], we pick from each equivalence class a representative from [0,1], and
collect them in a set S.

If we let, for r ∈Q,
Sr = {s+ r : s ∈ S},

then
Sr ∩ St for r 6= t.

Suppose S is measurable. Then so is each Sr , and λ(Sr) = λ(S).

If λ(S) = 0, then λ(R) = 0, which is impossible. On the other hand, if λ(S)> 0,
then, by countable additivity,

2= λ([0,2])≥ λ

 

⋃

r∈Q∩[0,1]

Sr

!

=
∑

r∈Q∩[0,1]

λ(S) =∞,
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contradiction.

The Axiom of Choice is equivalent to a number of other principles. We will use
the Well-ordering Principle:

(WO) Every set X can be well-ordered.

This means that one can define a binary relation < on X so that every non-empty
subset of X has a <-minimal element.

We use (WO) to construct a set B ⊆ R such neither B nor R\B contains a perfect
subset. Such sets are called Bernstein sets.

Theorem 8.2: There exists a Bernstein set.

Proof. Let P be the set of perfect subsets of R. We can well-order this set, say

P= {Pξ : ξ < 2ℵ0}.

Note that every perfect subset corresponds to Cantor-Scheme, which can be
coded by a real number (see Lecture 9). Therefore, there are at most 2ℵ0 -many
perfect subsets of R, and it is not hard to see that there are exactly 2ℵ0-many.

Furthermore, we assume each Pξ is well-ordered.

Pick a0 6= b0 from P0. Assume we have chosen ξ < 2ℵ0 , and {aβ : β < ξ} and
{bβ : β < ξ} so that

aβ , bβ ∈ Pβ and all aβ , bγ pairwise distinct,

we can choose aξ, bξ ∈ Pξ to be the first two elements of Pξ \
⋃

γ<ξ{aγ, bγ}. This

is possible since a perfect subset of R has cardinality 2ℵ0 , and ξ < 2ℵ0 .

Put
A= {aξ : ξ < 2ℵ0} B = {bξ : ξ < 2ℵ0}.

Neither A nor B has a perfect subset by construction, and since A⊆ R \ B, B is a
Bernstein set.

Proposition 8.3: A Bernstein set does not have the Baire property.

Proof. Assume for a contradiction a Bernstein set B has the Baire property. Then
there exists an open set U and a meager Fσ set F such that

B4 U ⊆ F.
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Then G = U \ F is Gδ, and G ⊆ U ∩ B ⊆ B. Furthermore, M = B \ G ⊆ F is
meager, and thus we have B = M ∪ G, where M is meager and G is Gδ.

At least one of B, R\B is not meager. Wlog assume B is not meager. (If not, obtain
the representation “meager∪ Gδ” above forR\B and proceed analogously.) Then
B contains a non-meager Gδ set G, which must be uncountable. By Theorem
6.2, G is Polish and hence must contain a perfect subset, contradiction.

The existence of arbitrary choice functions appears to be a rather strong assump-
tion. It has consequences that seem paradoxical in the sense that they conflict
with basic intuitions we have about objects and they behavior with respect to
size or other characteristics. Arguably the most famous example is the Banach-
Tarski Paradox, which uses the Axiom of Choice to partition a ball in R3 into
finitely many pieces, and then, using rigid transformations (i.e. rotations and
translations), to assemble them into two balls of the original size.

On the other hand, the Axiom of Choice has implies or is even equivalent to
many principles that are applied throughout many areas of mathematics, such
as the existence of bases of vector spaces, Zorn’s Lemma, Tychonoff’s Theorem
on the compactness of product spaces, the Hahn-Banach Theorem, or the Prime
Ideal Theorem.

For some applications, however, a weaker form of the Axiom of Choice is suffi-
cient.

The Axiom of Countable Choice:

(ACω) Every countable family X of non-empty sets has a choice-function.

Stronger than Countable Choice, but still weaker than the full Axiom of Choice
is Axiom of Dependent Choices:

(DC) If E is a binary relation on a non-empty set A, and if for every a ∈ A
there exists b ∈ A such that a E b, then there exists a function f : N→ A such
that for all n ∈ N, f (n) E f (n+ 1).

A seminal result by (author?) [Sol70] showed that DC is no longer sufficient
to prove the existence of non-regular sets in the above sense. He constructed
(though under a large cardinal assumption) a model of ZF+DC in which every
set of real numbers is Lebesgue measurable, has the Baire property and the
perfect subset property.
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Lecture 9: Effective Borel sets

Suppose U ⊆ NN is open. The there exists a set W ⊆ N<N such that

U =
⋃

σ∈W
Nσ.

Using a standard (effective) coding procedure, we can identify finite sequence
of natural numbers with a natural number, and thus can see W as a subset of N.

If we provide a Turing machine with oracle W , we can semi-effectively test
for membership in U as follows. Assume we want to determine whether some
α ∈ NN is in U . Write α on another oracle tape, and start scanning the W oracle.
If we retrieve aσ that coincides with an initial segment of α, we know α ∈ U . On
the other hand, if α ∈ U , then we will eventually find some α |n in W . If α 6∈ U ,
then the search will run forever. In other words, given W , U is semi-decidable,
or, extending terminology from subsets of N to subsets of NN, U is recusively
enumerable relative to W .

Similarly, we can identify a closed set F with the code for the tree

TF = {α |n : α ∈ F, n ∈ N}.

Then we determining whether α ∈ F is co-r.e. in (the code of) TF . If α 6∈ F we
will learn so after a finite amount of time.

These simple observations suggest the following general approach to Borel sets.

• Borel sets can be coded by a single infinite sequence in NN (or 2N).

• Given the code, we can describe the Borel set effectively, by means of
oracle computations.

• The connection between degrees of unsolvability and definability results
in a close correspondence between arithmetical sets (Σ0

n) and Borel sets
of finite order (ΣΣΣ0

n).

In this lecture we will fully develop this correspondence. Later, we will see that
it even extends beyond the finite level.
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Borel codes

We fix a computable bijection π : N<N → N. Furthermore, let 〈., .〉 be the
standard coding function for pairs,

〈x , y〉=
(x + y)(x + y + 1)

2
+ y.

Borel codes are defined inductively.

Definition 9.1:

(a) A real γ ∈ NN is a ΣΣΣ0
1- code if γ(0) = 2. In this case we say that γ codes

the open set
Uγ =

⋃

n∈N
Nπ−1(γ(n)),

or γ is a ΣΣΣ0
1-code for U .

(b) If γ is a ΣΣΣ0
n-code, then γ′ with γ′(0) = 3, γ′(n+ 1) = γ(n) is a ΠΠΠ0

n-code. If
γ codes A⊆ NN, then we say γ′ codes ¬A.

(c) If for each m≥ 0, γm is a ΠΠΠ0
n code for Am ⊆ NN, then γ given by γ(0) = 4

and
γ(〈m, n〉+ 1) = γm(n)

is a ΣΣΣ0
n+1 code, and it codes the set

⋃

m Am.

Hence the first position in each code indicates the kind of set it codes – an open
set, a complement, or a union.

We also define the set of Borel codes of finite order

Bcω = {γ ∈ NN : γ is a ΣΣΣ0
n- or ΠΠΠ0

n-code, for some n≥ 1}.

The following is a straightforward induction.

Proposition 9.2: A set is ΣΣΣ0
n (ΠΠΠ

0
n) if and only if it has a ΣΣΣ0

n- (ΠΠΠ0
n) code.

Note that the definition actually assigns codes to representations of sets. A Borel
set can have (and has) multiple codes, just as it has multiple representations. We
can, for example, represent an open set by different sets W of initial segments.

Moreover, every ΣΣΣ0
1 set is also ΣΣΣ0

2, and thus a set has codes which reflect the
“more complicated” definition of the ΣΣΣ0

1 set as a union of closed sets. It is useful
to keep this distinction between a Borel set and its Borel representation in mind.
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Each Borel code induces a tree structure that reflects how the corresponding
Borel set is built up from open sets. A “4” corresponds to a node with infinitely
many nodes immediately below it, a “3” to a node with just one immediate
extension, and a “2” represents a terminal node, since the open sets are the
“building blocks” of the Borel sets and hence are not split further.

The tree of a Borel code is well-founded (i.e. has no infinite path), since a Borel
code is defined via a well-founded recursion. The rank of the tree is a countable
ordinal.

How hard is it to decide whether a given real is a Borel code? We will see later
that this question is quite difficult. In particular, we will extend the set of Borel
codes to transfinite orders and see that the set of all Borel codes is not Borel.
Deciding whether a tree on N is well-founded will play a fundamental role in
this regard.

Borel sets with computable codes

Suppose γ is a computable,ΣΣΣ0
2-code for an Fσ set F . Then γ is of the form (4,γ′),

where, for m≥ 0, the m-th column of γ′,

γ′m(n) = γ
′(〈m, n〉)

is of the form (3,αm), each αm being a ΣΣΣ0
1-code for an open set. Note that γ′

and all αm are computable, too.

We can formulate membership in F as follows.

α ∈ F ⇔ ∃m∀n [γ′m(π(α |n)) = 0].

Note that the inner predicate R(x , y) given by

R(x , y) ⇔ γ′x(y) = 0

is decidable. Hence an Fσ set F with a computable code can be represented in
the following form. There exists a recursive predicate R(x , y) such that

α ∈ F ⇔ ∃m∀n R(m,α |n).

In this formulation we drop the coding function π and identify finite sequences
directly with natural numbers, and from now on we will continue to do so. It
significantly simplifies notation.
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On the other hand, if R(x , y) is a recursive predicate, we can define the set

Wm = {σ : R(m,σ)}.

Then the set Um =
⋃

Wm
Nσ is open, and the set F given by

α ∈ F ⇔ ∃nα ∈ ¬Um ⇔ ∃m∀n¬R(m,α |n)

is Fσ.

Thus, there seems to be a close connection between Fσ sets with recursive Borel
codes and sets definable by Σ0

2 formulas over recursive predicates. Given that we
introduced the notation ΣΣΣ0

2 for Fσ sets earlier, this is perhaps not very surprising.

In this analysis, there seems to be nothing specific about the Fσ used in the
example. Indeed, it can be extended to Borel sets of finite order, which we will do
next. We introduce the lightface Borel hierarchy and show that it corresponds
to Borel sets of finite order with recursive codes. Using relativization, we then
obtain a complete characterization of Borel sets of finite order: They are precisely
those sets definable by arithmetical formulas, relative to a real parameter.

The effective Borel hierarchy

Definition 9.3: A set A⊆ NN is

(a) Σ0
1 if there exists a recursive predicate R(x) such that

α ∈ A ⇔ ∃n R(α |n),

(b) Π0
n if ¬A is Σ0

n,

(c) Σ0
n+1 if there exists a Π0

n set P such that

α ∈ A ⇔ ∃n [(n,α) ∈ P].

The following result is at the heart of the effective theory.

Proposition 9.4: Let A⊆ NN. Then

A is Σ0
n (Π

0
n) ⇔ A is ΣΣΣ0

n (ΠΠΠ0
n) and has a computable ΣΣΣ0

n- (ΠΠΠ0
n-) code.
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Proof. We proceed by induction on the Borel complexity.

Suppose A is Σ0
1. Let R be recursive such that A = {α: ∃n R(α |n)}. If we let

W = {σ : R(σ)}, then
A=

⋃

σ∈W
Nσ,

and hence is an open set. Furthermore,

γ(n) =











2 n= 0,

1 n≥ 1 & R(n− 1),
0 n≥ 1 &¬R(n− 1),

is a computable Borel code for A.

If A is ΣΣΣ0
1 with a computable, ΣΣΣ0

1-code γ, then γ is of the form (2,γ′), γ′ coding
a representation of A as a union of basic open cylinders. Then

α ∈ A ⇔ ∃n [γ′(α |n) = 1].

Hence we can set R(σ) = γ′(σ).

If A is Π0
n, then ¬A is Σ0

n. By induction hypothesis, ¬A has a computableΣΣΣ0
n-code

γ. Then (3,γ) is a computable ΠΠΠ0
n-code for A.

Conversely, if γ = (3,γ′) is a computable ΠΠΠ0
n-code for a ΠΠΠ0

n set A, then γ′ is a
computable ΣΣΣ0

n-code for the ΣΣΣ0
n set ¬A. By induction hypothesis, ¬A is Σ0

n and
hence A is Π0

n.

Finally, assume that A is Σ0
n+1. Let P be Π0

n such that

α ∈ A ⇔ ∃n [(n,α) ∈ P].

By induction hypothesis, there exists P is ΠΠΠ0
n with a computable ΠΠΠ0

n-code γ =
(3,4, . . . ). Let

Pm = {β : (m,β) ∈ P}= P ∩ N〈m〉.

Then each Pm is ΠΠΠ0
n, since the Borel levels are closed under finite intersections,

and we have
A=

⋃

m
Pm.

Therefore, A isΣΣΣ0
n+1. Furthermore, each Pm has a computableΠΠΠ0

n-code γm, which
can be computed uniformly in m, and thus γ∗ = (4, (γm(n))m,n) is a computable,
ΣΣΣ0

n+1-optimal code for A.
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For the converse, let A be ΣΣΣ0
n+1 with a computable ΣΣΣ0

n+1-code γ= (4,γ′). Then
each of the columns of γ′ is a computable ΠΠΠ0

n-code for a ΠΠΠ0
n set Pm. Let P ′m =

{(m,α): α ∈ Pm}. P ′m is ΠΠΠ0
n, too. This can be seen as follows. N × NN is

homeomorphic to NN. {m} × Pm is Π0
n in N×NN, by replacing each set S in the

definition of Pm by {m}×S (note that {m} is clopen in N). Borel complexities are
preserved under homeomorphic images. (We will discuss the closure properties
of Borel sets in detail later.)

A similar argument shows that P∗m = {(k,α): k 6= m or (k = m &α ∈ Pm)} is ΠΠΠ0
n

for each n. Now let P∗ =
⋃

m P∗m. Then P∗ is ΠΠΠ0
n, and we can effectively and

uniformly in m compute an ΠΠΠ0
n-code for it. By induction hypothesis, P∗ is Π0

n,
and we have

α ∈ A ⇔ ∃m (m,α) ∈ P∗,

as desired.

Relativization

Using relativized computations via oracles, we can define a relativized version
of the effective Borel hierarchy. This way we can capture all Borel sets of finite
order, not just the ones with computable codes.

Definition 9.5: Let γ ∈ NN. A set A⊆ NN is

(a) Σ0
1(γ) if there exists a predicate R(x) recursive in γ such that

α ∈ A ⇔ ∃n R(α |n),

(b) Π0
n(γ) if ¬A is Σ0

n(γ),

(c) Σ0
n+1(γ) if there exists a Π0

n(γ) set P such that

α ∈ A ⇔ ∃n [(n,α) ∈ P].

A straightforward relativization gives the following analogue of Proposition 9.4.

Proposition 9.6: Let A⊆ NN and γ ∈ NN. Then

A is Σ0
n(γ) (Π

0
n(γ)) ⇔ A is ΣΣΣ0

n (ΠΠΠ0
n) and has a ΣΣΣ0

n- (ΠΠΠ0
n-) code recursive in γ.

We can now present the fundamental theorem of effective descriptive set theory.
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Theorem 9.7: A set A⊆ NN is ΣΣΣ0
n (ΠΠΠ0

n) if and only if it is Σ0
n(γ) (Π

0
n(γ)) for some

γ ∈ NN.

Proof. If A is ΣΣΣ0
n, then by Proposition 9.2 it has a ΣΣΣ0

n-code γ, and by Proposition
9.6 A is Σ0

n(γ). The other direction follows immediately from Proposition 9.6.

The argument for ΠΠΠ0
n is completely analogous.

Definability in Arithmetic

One of the fundamental insights of recursion theory is the close relation between
computability and definability in arithmetic. The recursively enumerable subsets
of N are precisely the sets Σ1-definable over the standard model of arithmetic,
(N,+, ·, 0, 1), and Post’s Theorem uses this result to establish a rigid connection
between levels of arithmetical complexity and computational complexity.

As indicated above, we can use this relation to give a characterization of the
Borel sets of finite order in terms of definability. Since we are dealing with
subsets of NN, that is, with sets of functions on N rather than just functions on
N, we will work in the framework of second order arithmetic.

The language of second order arithmetichas two kinds of variables: number
variables x , y, z, . . . (and sometimes k, l, m, n if they are not used as metavari-
ables), to be interpreted as elements of N, and function variables α,β ,γ, . . . ,
intended to range over functions from N into N, i.e. elements of Baire space,
i.e. reals. The non-logical symbols are the binary function symbols +, ·, the
binary relation symbol <, the application function symbol ap, and the constants
0, 1. Numerical terms are defined in usual way using +, ·, 0, 1, and involve only
number variables. Atomic formulas are t1 = t2, t1 < t2, and ap(α, t1) = t2,
where t1, t2 are numerical terms.

The standard model of second order arithmetic is the structure

A2 = (N,NN, ap,+, ·,<, 0, 1),

where + and · are the usual operations on natural numbers, < is the standard
ordering of N. The two domains are connected by the binary operation ap :
NN ×N→ N, defined as

ap(α, x) = α(x).

A relation R ⊆ Nm × (NN)n is definable over A2 if there exists a formula ϕ of
second order arithmetic such that for any x1, . . . , xm ∈ N and α1, . . .αn ∈ NN,

R(x1, . . . , xm,α1, . . .αn) iff A2 |= ϕ[x1, . . . , xm,α1, . . .αn].
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Theorem 9.8: A set A⊆ NN is Σ0
n (Π

0
n) if and only if it is definable over A2 by a

Σ0
n (Π

0
n) formula.

Here, Σ0
n (Π

0
n) formula means that we can only quantify over number variables,

as opposed to Σ1
n (Π

1
n) formulas, where we can also quantify over function

variables.

The proof is a straightforward extension of the standard argument for subsets of
N.

To formulate the fundamental Theorem 9.7 in terms of definability, we need the
concept of relative definability. We add a new constant function symbol γ to
the language. Given a function γ, a relation is definable in γ if it is definable
over the structure

A2(γ) = (N,NN, ap,+, ·,<, 0, 1,γ),

where the symbol γ is interpreted as γ.

Then the following holds.

Theorem 9.9: A set A⊆ NN is ΣΣΣ0
n (ΠΠΠ

0
n) if and only if it is definable in γ by a Σ0

n
(Π0

n) formula, for some γ ∈ NN.

This theorem facilitates the description of Borel sets considerably. As an example,
consider the set

A= {α: α eventually constant}.

We have
α ∈ A ⇔ ∃n∀m[m≥ n ⇒ α(n) = α(m)]

The right hand side is a Σ0
2-formula. Hence the set A is ΣΣΣ0

2 (even Σ0
2).
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Lecture 10: The Structure of Borel Sets

In this lecture we further investigate the structure of Borel sets. We will use
the results of the previous lecture to derive various closure properties and other
structural results. As an application, we see that the Borel hierarchy is indeed
proper.

Notation

Before we go on, we have to address some notational issues. So far we have
used notation quite liberally, especially when it came to product sets. We will
continue to do so, but we want to put this on a firmer footing.

Using coding, we can identify any product space Nm × (NN)n with NN. One way
to do this is to fix, for each n≥ 1, an effective homeomorphism θn : (NN)n→ NN

and map

(k1, . . . , km,α1, . . . ,αn) 7→ (k1, . . . , km,θn(α1, . . . ,αn)).

Here (k1, . . . , km,θn(α1, . . . ,αn)) is just a suggestive way of writing the concate-
nation

〈k1〉_ · · ·_〈km〉_θn(α1, . . . ,αn).

We have already used this notation in the previous lecture. In the following, we
will continue to switch freely between product sets and their coded counterparts,
as subsets of NN.

Another notation identifies sets and relations. We will identify sets A ⊆ Nm ×
(NN)n with the relation they induce and write A(k1, . . . , km,α1, . . . ,αn) instead
of (k1, . . . , km,α1, . . . ,αn) ∈ A. Conversely, we will identify relations with the set
they induce.

Normal forms

Theorem 9.9 tells us that a set A⊆ NN is ΣΣΣ0
n if and only if it is definable by a Σ0

n
formulas over A2, relative to some parameter. That means that there exists a
bounded formula ϕ(x1, . . . , xn,α,γ) (i.e. all quantifiers are bounded) such that

A(α) ⇔ ∃x1 . . . Qxn ϕ(x1, . . . , xn,α,γ) holds (in the standard model).

Here γ is the parameter, and Q is “∃” if n is odd, and “∀” if n is even.
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Similarly, A⊆ NN is ΠΠΠ0
n if and only if it is definable as

A(α) ⇔ ∀x1 . . . Qxn ϕ(x1, . . . , xn,α,γ) holds (in the standard model).

where ϕ(x1, . . . , xn,α,γ) is bounded, and Q is “∀” if n is odd, and “∃” if n is
even.

What do sets defined by bounded formulas look like? An atomic formula (without
parameters) either contains no function variable at all, or it is of the form
α(t1) = t2. This implies that the truth of an atomic formula is determined by
finitely many positions in α. This remains true if we consider logical combinations
of atomic formulas, or even bounded quantification. Hence a bounded formula
defines an open subset of NN. On the other hand, the reals for which a bounded
formula does not hold are definable by a bounded formula, too, since the negation
of a bounded formula is again a bounded formula. We conclude that bounded
formulas define clopen subsets of NN. On the other hand, if we have ΣΣΣ0

1-code
for a set A and its complement, we can decide the relation A(α |n) recursively in
the code.

Hence we can formulate the Normal Form above as follows. A⊆ NN is ΣΣΣ0
n if and

only if there exists a clopen set R ⊆ Nn ×NN

A(α) ⇔ ∃x1 . . . Qxn R(x1, . . . , xn,α),

and similarly for ΠΠΠ0
n sets.

Closure properties

We can use the Normal Form to derive several closure properties of ΣΣΣ0
n (ΠΠΠ0

n).

If P ⊆ N×NN, we define the projection of P along N ∃NP as

∃NP = {α: ∃n P(n,α)}.

The dual operation is
∀NP = {α: ∀n P(n,α)}.

Proposition 10.1: For each n≥ 1, ΣΣΣ0
n is closed under ∃N, and ΠΠΠ0

n is closed under
∀N.

Proof. We prove the result for Σ0
n (lightface). The boldface case follows by

relativization, and the proof for ΠΠΠ0
n is completely dual.
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Let ϕ(x1, . . . , xn, z,α) be a bounded formula such that

A(z,α) ⇔ ∃x1 . . . Qxn ϕ(x1, . . . , xn, z,α) holds.

Then
∃NA(α) ⇔ ∃x0∃x1 . . . Qxn ϕ(x1, . . . , xn, x0,α)

We can collect two existential number quantifiers into one by using the pairing
function 〈., .〉, or rather, its inverses, which we will denote by (.)0 and (.)1. (Recall
that the pairing function is definable by a bounded formula.) Then

∃NA(α) ⇔ ∃z1 . . . Qzn ϕ((z1)1, . . . , zn, (z1)0,α),

as desired.

One can use similar applications of coding and quantifier manipulation to prove
a number of other closure properties, Often they follow also directly from the
topological definitions, but it is good to have several techniques at hand.

Proposition 10.2:

(a) For all n≥ 1, ΣΣΣ0
n is closed under countable unions and finite intersections.

(b) For all n≥ 1, ΠΠΠ0
n is closed under finite unions and countable intersections.

(c) For all n ≥ 1, ∆∆∆0
n is closed under finite unions, finite intersections, and

complements.

Proof. One can prove this by induction along the hierarchy. To obtain the
closure under finite unions and intersections, one can use the following logical
equivalences.

∃x P(x) ∧ ∃y R(y) ⇔ ∃x∃y (P(x) ∧ R(y))

∀x P(x) ∨ ∀y R(y) ⇔ ∀x∀y (P(x) ∨ R(y))

Given P ⊆ N×NN, the bounded projection along N is defined as

∃≤P = {(n,α): ∃m≤ n P(m,α)}.

and the dual is
∀≤P = {(n,α): ∀m≤ n P(m,α)}.
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Proposition 10.3: For all n≥ 1, ΣΣΣ0
n, ΠΠΠ0

n, and∆∆∆0
n are closed under ∃≤ and ∀≤.

Proof. In this case we use the coding function π : N<N → N. We can define a
partial inverse

(k)i =











σi if k = π(σ) for a finite sequence σ = (σ0, . . . ,σn−1)
and i < n

0 otherwise.

Using this decoding, we have the following equivalence, which immediately
imply the closure properties for ΣΣΣ0

n and ΠΠΠ0
n, respectively, and hence also for∆∆∆0

n.

∀m≤ n∃k P(m, k) ⇔ ∃k∀m≤ n P(m, (k)m)

∃m≤ n∀k P(m, k) ⇔ ∀k∃m≤ n P(m, (k)m)

Finally, the levels of the Borel hierarchy are closed under continuous preimages.

Proposition 10.4: For all n ≥ 1, for any A ⊆ NN, and for any continuous f :
NN→ NN, if A is ΣΣΣ0

n (ΠΠΠ
0
n,∆∆∆0

n) then f −1(A) is ΣΣΣ0
n (ΠΠΠ

0
n,∆∆∆0

n).

Proof. This follows easily by induction on n, since open and closed sets are
closed under continuous preimages.

However, we can also argue via definability, since by Proposition 4.7 one can
represent a continuous function through a monotone mapping ψ from finite
strings to finite strings. We have

f −1(A) = {α: A( f (α))}.

Let R be clopen such that

A(α) ⇔ ∃x1 . . . Qxn R(x1, . . . , xn,α).

Since clopen predicates depend only on a finite initial segment of α, we can
substitute f (α) for α. The resulting formula defines f −1(A), and is equivalent
to a Σ0

n-formula relative to a parameter coding the mapping ψ.
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Universal sets

Let Γ be a family of subsets defined in various Polish spaces. Of course we have
in mind the classes ΣΣΣ0

n or ΠΠΠ0
n, but the concept of a universal set can be defined

quite generally.

Definition 10.5: Let Y be a set. A set U ⊆ X × Y is Y -universal for Γ if U ∈ Γ ,
and for every set A in Γ , there exists a y ∈ Y such that

A= {x : (x , y) ∈ U}.

A universal set for Γ can be thought of as a parametrization of Γ , the second
component providing a code or parameter for each set in Γ .

A well-known example of a universal set is the generalized halting problem,

K0 = {(x , e): the e-th Turing machine halts on input x}.

In the sense of the above definition, K0 is N-universal for the family of recursively
enumerable sets.

We have seen in the previous lecture that there is a strong connection between
r.e. sets and Σ0

1 sets. The relation is based on the fact that each Σ0
1 set in NN has

a code that is r.e. We can use the code to obtain a universal set for ΣΣΣ0
1.

Proposition 10.6: For any n ≥ 1, there exists a set U ⊆ NN × NN that is NN-
universal for ΣΣΣ0

n (ΠΠΠ0
n).

Proof. We can use the Borel codes defined in the previous lecture.

First of all, notice that for each n≥ 1, the set of all ΣΣΣ0
n (ΠΠΠ0

n)-codes is homeomor-
phic to NN. This follows easily from the definition of the Borel codes. Hence,
if we fix n, every γ ∈ N represents a ΣΣΣ0

n (ΠΠΠ0
n)-code of a ΣΣΣ0

n (ΠΠΠ0
n) set, and every

such set in turn has a code γ ∈ N.

Now we let, for fixed n,

U = {(α,γ): α is in the ΣΣΣ0
n (ΠΠΠ

0
n) set coded by γ}.

It follows easily from Theorem 9.9 that U is ΣΣΣ0
n (ΠΠΠ0

n), too, and it is clear from
the definition of U that it parametrizes ΣΣΣ0

n (ΠΠΠ0
n).

The result can be generalized to hold for arbitrary Polish spaces X , i.e. for any
n≥ 1, there exists a set U ⊆ NN × X that is NN-universal for ΣΣΣ0

n(X ) (ΠΠΠ0
n(X )). To
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achieve this, one has to define Borel codes for X . This can be done by fixing
a countable basis (Vn) of the topology of X , and assign a sequence γ ∈ NN the
open set

Uγ =
⋃

n∈N
Vγ(n).

The definition of codes for higher levels is then similar to Definition 9.1.

As in the case of the halting problem, we can use the existence of universal sets
to show that the levels of the Borel hierarchy are proper. The crucial point is
that we can use universal sets to diagonalize.

Theorem 10.7: For any n≥ 1, ΣΣΣ0
n 6=ΠΠΠ

0
n.

Proof. Let U be an NN-universal set for ΣΣΣ0
n. Put

D = {α: (α,α) ∈ U}.

Since U is ΣΣΣ0
n, D is ΣΣΣ0

n, too. Then ¬D is ΠΠΠ0
n, but cannot be ΣΣΣ0

n, for then there
would exist β such that

¬D = {α: (α,β) ∈ U},

and thus
β ∈ D ⇔ (β ,β) ∈ U ⇔ β ∈ ¬D,

a contradiction.

The diagonal set D can obviously be defined for any universal set U , and hence
the same proof yields a ΠΠΠ0

n set that is not ΣΣΣ0
n.

Corollary 10.8: For any n≥ 1,

∆∆∆0
n (ΣΣΣ0

n (∆∆∆0
n+1

∆∆∆0
n (ΠΠΠ0

n (∆∆∆0
n+1.

Proof. Since ΣΣΣ0
n * ΠΠΠ0

n and ΠΠΠ0
n * ΣΣΣ0

n, ∆∆∆0
n ( ΣΣΣ0

n,ΠΠΠ0
n. On the other hand if

ΣΣΣ0
n =∆∆∆

0
n+1, then ΣΣΣ0

n would be closed under complements, and hence ΣΣΣ0
n =ΠΠΠ

0
n,

contradicting Theorem 10.7.

10 – 6



Borel sets of transfinite order

We saw that the Borel sets of finite order

Borelω =
⋃

n<ω
ΣΣΣ0

n

form a proper hierarchy. This fact also implies that Borelω does not exhaust all
Borel sets.

Proposition 10.9: There exists a Borel set B that is not ΣΣΣ0
n for any n ∈ N.

Proof. For every n ∈ N, pick a set Bn in ΠΠΠ0
n \ΣΣΣ

0
n. Put

B =
⋃

n∈N
{(n,α): α ∈ Bn}.

Each of the sets in the union is Borel and hence B is Borel. If B were of finite
order, it would be ΣΣΣ0

k for some k ≥ 1. Since each ΣΣΣ0
n is closed under finite

intersections, it follows that for all m≥ 1,

B ∩ N〈m〉

is ΣΣΣ0
k. But B ∩ N〈m〉 is homeomorphic to Bm, hence Bm in ΣΣΣ0

k for all m ≥ 1,
contradiction.

We can extend the Borel hierarchy to arbitrary ordinals.

Definition 10.10: Let X be a Polish space. Given an ordinal ξ, we define

ΣΣΣ0
ξ(X ) = {

⋃

k

Ak : Ak ∈ΠΠΠ0
ζk
(X ), ζk < ξ},

ΠΠΠ0
ξ(X ) = {¬A: A∈ΣΣΣ0

ξ(X )}= ¬ΣΣΣ
0
n(X ),

∆∆∆0
ξ(X ) =ΣΣΣ

0
ξ(X )∩ΠΠΠ

0
ξ.

It actually suffices to consider ordinals up to ω1, the first uncountable ordinal.

Proposition 10.11: For every Borel set B there exists ξ < ω1 such that B ∈ΣΣΣ0
ξ
.

Proof. If B is open, this is clear. It is also clear if B is the complement of a Borel
for which the statement has been verified.
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Assume finally that

B =
⋃

n
Bn, where each Bn is Borel,

and assume the statement holds for each Bn. For each n, let ξn be a countable
ordinal such that

Bn ∈ΠΠΠ0
ξn

.

Then
B ∈ΣΣΣ0

ξ, where ξ= sup{ξn + 1: n ∈ N}.

Since each ξn is countable, ξ is countable.

Borel sets of infinite order have the same closure properties as their counterparts
of finite order. The proofs, however have to proceed by induction using the
topological properties of ΣΣΣ0

ξ
and ΠΠΠ0

ξ
, since the characterization via definability

in arithmetic is no longer available – the arithmetical hierarchy reaches only to
ω.

Similarly, the Hierarchy Theorem 10.7 extends to the transfinite levels. For the
finite levels, this followed from the existence of universal sets for each level.

Proposition 10.12: For each ξ < ω1, there exists a NN-universal set for ΣΣΣ0
ξ
(ΠΠΠ0
ξ
).

Proof. If U is NN-universal for ΣΣΣ0
ξ
, then

¬U = {(α,γ): (α,γ) 6∈ U}

is NN-universal for ΠΠΠ0
ξ
, since for any ΠΠΠ0

ξ
set A, B = ¬A is ΣΣΣ0

ξ
and hence there

exists a γ such that
B = {β : (β ,γ) ∈ U}

and hence
A= {α: (α,γ) 6∈ U}.

It remains to show that eachΣΣΣ0
ξ

has anNN-universal set. By induction hypothesis,

for every η < ξ exists a NN-universal set Uη forΠΠΠ0
η. Since ξ is countable, we can

pick a monotone sequence of ordinals (ξn) such that ξ = sup{ξn + 1: n < ω}.
Define

Uξ = {(α,γ): ∃n(α, (γ)n) ∈ Uξn
},

where (γ)n denotes the nth column of γ. It is straightforward to check that Uξ
is NN-universal for ΣΣΣ0

ξ
. (Note that any set A in ΣΣΣ0

ξ
can be represented as

⋃

n An

with An ∈ΠΠΠ0
ξn

, since (ξn + 1) is cofinal in ξ.)
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This general proof of existence of universal sets does not use Borel codes, since
those were defined only for Borel sets of finite order. The proof of Proposition
10.12 provides an idea how we could extend the definition of a code to transfinite
orders: Take unions of codes along a cofinal sequence. However, we would like
to this in an effective way, and it is not clear how to do this for infinite ordinals
in general.

We will later return to this question, when we introduce computable ordinals.
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Lecture 11: Continuous Images of Borel Sets

In 1916, Nikolai Lusin asked his student Mikhail Souslin to study a paper by
Henri Lebesgue. Souslin found a number of errors, including a lemma that
asserted that the projection of a Borel is again Borel. In this lecture we will study
the behavior of Borel sets under continuous functions. We will see that on the
one hand every Borel set is the continuous image of a closed set, but that on the
other hand continuous images of Borel sets are not always Borel.

This gives rise to a new family of sets, the analytic sets, which form a proper
superclass of the Borel sets with interesting properties.

Borel sets as continuous images of closed sets

We have seen in Theorem 2.6 that every Polish space is the continuous image of
Baire space NN. As we will see now, we can strengthen this result.

Theorem 11.1: Let X be a Polish space. Then there exists a closed subset F ⊆ NN

and a continuous bijection f : F → X that can be extended to a continuous surjection
g : NN→ X .

Proof. We have seen (Theorem 2.4) that every uncountable Polish space contains
a homeomorphic embedding of Cantor space. This was achieved by means of a
Cantor scheme. We take up this idea again and adapt it to the Baire space.

A Lusin scheme on a set X is a family (Fσ)σ∈N<N of subsets of X such that

(i) σ ⊆ τ implies Fσ ⊇ Fτ,

(ii) For all τ ∈ N<N, i 6= j ∈ N, Fτ_〈i〉 ∩ Fτ_〈 j〉 = ;.

If it has the additional property that

(iii) diam(Fα|n)→ 0 for n→∞,

then we can, similarly to a Cantor scheme, define the set

D = {α ∈ NN :
⋂

n∈N
Fα|n 6= ;}

and an associated map f : D→ X by

{ f (α)}=
⋂

n∈N
Fα|n .
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Properties (i)-(iii) ensure that f is continuous and injective.

To prove the theorem we devise a Lusin scheme on X such that D will be closed,
and f will be a surjection, too. This is ensured by the following additional
properties.

(a) F; = X ,

(b) Each Fτ ist ΣΣΣ0
2,

(c) For each τ, diam(Fσ)≤ 1/2|σ|,

(d) Fτ =
⋃

i∈N Fτ_〈i〉 =
⋃

i∈N Fτ_〈i〉.

For this we have to show that every ΣΣΣ0
2 set F ⊆ X can be written, for given ε > 0,

as F =
⋃

i∈N Fi, where the Fi are pairwise disjoint ΣΣΣ0
2 sets of diameter < ε so

that Fi ⊆ F :

Let F =
⋃

i∈N Ci , where Ci is closed, and Ci ⊆ Ci+1. Then F =
⋃

i∈N(Ci+1\Ci). Let
(Un) be a covering of X with open sets of diameter< ε. Put D(i)n = Un∩(Ci+1\Ci).
Then D(i)n is∆∆∆0

2. Now let E(i)n = D(i)n \(D
(i)
1 ∪· · ·∪D(i)n−1). Then Ci+1\Ci =

⋃

n∈N E(i)n

where the E(i)j are ΣΣΣ0
2 sets of diameter < ε. Therefore,

F =
⋃

i,n∈N
E(i)n and E(i)n ⊆ Ci+1 \ Ci ⊆ Ci+1 ⊆ F.

The mapping f associated with this Lusin scheme is surjective due to (a) and
(d). Furthermore, the domain D of f is closed: Suppose αn ∈ D, αn→ α. Then
f (αn) is Cauchy, since for ε > 0, there exists N with diam(Fα|N )< ε and n0 such
that αn |N= α |N for all n≥ n0, so that d( f (αn), f (αm))< ε whenever n, m≥ n0.
Since X is Polish f (αn)→ y for some y ∈ X .

By (d) we have y ∈
⋂

n Fα|n =
⋂

n Fα|n , hence α ∈ D and f (α) = y .

It remains to show that we can extend f to a continuous surjection g : NN→ X .
Say a closed subset C of a topological space Y is a retract of Y if there exists a
continuous surjection g : Y → F such that g |C= id.

Lemma 11.2: Every non-empty closed subset of NN is a retract of NN.

If we combine the retract function with f , we then obtain the desired surjection
NN→ X .
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Proof of Lemma. Let C ⊆ NN be closed, and let T be a pruned tree such that
[T] = C . We define a monotone mapping ϕ : N<N→ T such that ϕ(σ) = σ for
all σ ∈ T . Then the induced (continuous) mapping ϕ∗ : NN→ C is the desired
retract.

Define ϕ by induction. Let ϕ(〈∅〉) = 〈∅〉. Given ϕ(τ), let

ϕ(τ_〈m〉) =

¨

τ_〈m〉 if τ_〈m〉 ∈ T,

any ϕ(τ)_〈k〉 ∈ T otherwise.

Note that k must exist since T is pruned.

Refining the topology as in Lecture 6, we can extend the result from Polish spaces
to Borel sets.

Corollary 11.3 (Lusin and Souslin): For every Borel subset B of a Polish space X
there exists a closed set F ⊆ NN and a continuous bijection f : F → B. Furthermore,
f can be extended to a continuous surjection g : NN→ B.

Proof. Enlarge the topology O of X to a topology OB for which B is clopen. By
Theorem 6.2, (B,OB |B) is a Polish space. By the previous theorem, there exists a
closed set F ⊂ NN and a continuous bijection f : NN→ (B,OB |B). Since O ⊆ OB,
f : F → B is continuous for O, too.

This theorem can be reversed in the following sense.

Theorem 11.4 (Lusin and Suslin): Suppose X , Y are Polish and f : X → Y is
continuous. If A⊆ X is Borel and f |A is injective, then f (A) is Borel.

Images of Borel sets under arbitrary continuous functions

As announced in the introduction, Borel sets are not closed under arbitrary
continuous mappings.

Theorem 11.5 (Souslin): The Borel sets are not closed under continuous images.

Proof. Let U ⊆ NN ×NN ×NN be NN-universal for ΠΠΠ0
1(N
N ×NN). Define

F := {(α,β): ∃γ (α,γ,β) ∈ U}.

We claim that this set is NN-universal for the set of all continuous images of closed
subsets of NN: On the one hand F is a projection of a closed set, and projections
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are continuous. This also also implies that all the sets Fβ = {α: (α,β) ∈ F}
are continuous images of a closed set. On the other hand, if f : C → NN is
continuous with C ⊆ NN closed (possibly empty) and f (C) = A, then

α ∈ A ⇔ ∃γ (γ,α) ∈ Graph( f ) ⇔ ∃γ (α,γ) ∈ Graph( f −1).

Since f is continuous, Graph( f ) and hence also Graph( f −1) are closed subsets
of NN ×NN. Thus, by the universality of U , there exists β such that

Graph( f −1) = Uβ = {(α,γ): (α,γ,β) ∈ U},

and hence
A= Fβ .

F cannot be Borel: Otherwise DF = {α: (α,α) 6∈ F} were Borel. By Corollary
11.3, every Borel set is the image of a closed set under a continuous mapping.
This implies that DF = Fβ . But then

β ∈ DF ⇔ β ∈ Fβ ⇔ (β ,β) ∈ F ⇔ β 6∈ DF ,

contradiction.
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Lecture 12: Analytic Sets

Definition 12.1: A subset A of a Polish space X is analytic if it is empty or there
exists a continuous function f : NN→ X such that f (NN) = A.

We will later see that the analytic sets correspond to the sets definable by means
of Σ1

1 formulas, that is formulas in the language of second order arithmetic that
have one existential function quantifier. Therefore, we will denote the analytic
subsets of X also by

ΣΣΣ1
1(X ).

Here are some simple properties of analytic sets.

Proposition 12.2:

(i) Every Borel set is analytic.

(ii) A continuous image of analytic set is analytic.

(iii) Countable unions of analytic sets are analytic.

Proof. (i) This follows directly from Corollary 11.3.

(ii) The composition of continuous mappings is continuous.

(iii) Let An be analytic and fn : NN→ X such that fn(NN) = An. Define f : NN→
X by

f (m,α) = fn(α).

Then f is continuous and f (NN) =
⋃

n An.

We can use our previous results about Borel sets to give various equivalent
characterizations of analytic sets.

Proposition 12.3: For a subset A of a Polish space X , the following are equivalent.

(i) A is analytic,

(ii) A is empty or there exists a Polish space Y and a continuous f : Y → X such
that f (Y ) = A,

(iii) A is empty or there exists a Polish space Y , a Borel set B ⊆ Y and a continuous
f : Y → X such that f (B) = A.

(iv) A is the projection of a closed set F ⊆ NN × X along NN,
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(v) A is the projection of a ΠΠΠ0
2 set G ⊆ 2N × X along 2N,

(vi) A is the projection of a Borel set B ⊆ X × Y along Y , for some Polish space Y .

Proof. (i)⇔ (ii): Follows from Theorem 2.6 and Proposition 12.2 (ii).

(ii)⇔ (iii): Follows from Corollary 11.3 and Proposition 12.2 (ii).

(i) ⇒ (iv): Let f : NN→ X be continuous, f (NN) = A. Then

x ∈ A ⇔ ∃α (α, x) ∈ Graph( f ),

hence A is the projection of the closed set Graph( f ) along NN.

(iv) ⇒ (iii): Clear, since projections are continuous.

(iv) ⇒ (v): NN is homeomorphic to a ΠΠΠ0
2 subset of 2N. (Exercise!)

(v) ⇒ (vi), (vi) ⇒ (iii): Obvious.

The Lusin Separation Theorem

In a course on computability theory one learns that there are effectively inseparable
disjoint r.e. sets. i.e. disjoint r.e. sets W, Z ⊆ N for which no recursive set A exists
with W ⊆ A and A∩ Z = ;.

In contrast to this, disjoint analytic sets can always be separated by a Borel set,
they are Borel separable.

Theorem 12.4 (Lusin): Let A, B ⊆ X be disjoint analytic sets. Then there exists a
Borel C ⊆ X such that

A⊆ C and B ∩ C = ;,

Proof. Let f : NN→ A and g : NN→ B be continuous surjections.

We argue by contradiction. The key idea is: if A and B are Borel inseparable,
then, for some i, j ∈ N, A〈i〉 = f (N〈i〉) and B〈 j〉 = g(N〈 j〉) are Borel inseparable.

This follows from the observation

(∗) if the sets Rm,n separate the sets Pm, Qn (for each m, n), then
R=

⋃

m

⋂

n Rm,n separates the sets P =
⋃

m Pm, Q =
⋃

n Qn.
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So, by using (∗) repeatedly, we can construct sequences α,β ∈ NN such that for
all n, Aα|n and Bβ |n are Borel inseparable, where

Aσ = f (Nσ) and Bσ = g(Nσ).

Then we have f (α) ∈ A and g(β) ∈ B, and since A and B are disjoint, f (α) 6=
g(β). Let U , V be disjoint open sets such that f (α) ∈ U , g(β) ∈ V . Since f and
g are continuous, there exists N such that f (Nα|N ) ⊆ U , g(Nβ |N ) ⊆ V , hence U
separates Aα|N and Bβ |N , contradiction.

The Separation Theorem yields a nice characterization of the Borel sets.

Theorem 12.5 (Souslin): If a set A and its complement ¬A are both analytic, then
A is Borel.

Proof. In Theorem 12.4, chose A0 = A and A1 = ¬A.

Sets whose complement is analytic are called co-analytic. Analogous to the
levels of the Borel hierarchy, the co-analytic subsets of a Polish space X are
denoted by

ΠΠΠ1
1(X ).

If we define, again analogy to the Borel hierarchy,

∆∆∆1
1(X ) =ΣΣΣ

1
1(X )∩ΠΠΠ

1
1(X ),

then Souslin’s Theorem states that

Borel(X ) =∆∆∆1
1(X ).

The Souslin operation

Souslin schemes give an alternative presentation of analytic sets which will be
useful later.

Definition 12.6: A Souslin scheme on a Polish space X is a family P = (Pσ)σ∈N<N
of subsets of X indexed by N<N.

The Souslin operation A for a Souslin scheme is given by

AP =
⋃

α∈NN

⋂

n∈N
Pα|n .

This means
x ∈AP ⇔ ∃α ∈ NN ∀n ∈ N x ∈ Pα�n. (∗)
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The analytic sets are precisely the sets that can be obtained by Souslin operations
on closed sets. If a Γ is a class of sets in various Polish spaces, we let

AΓ = {AP : P = (Pσ) is a Souslin scheme with Pσ ∈ Γ for all σ}.

Theorem 12.7:
ΣΣΣ1

1(X ) = AΠΠΠ0
1(X ).

Proof. Suppose f : NN→ X is continuous with f (NN) = A. Then

x ∈ A ⇔ ∃α ∈ NN ∀n ∈ N x ∈ f (Nα|n).

Hence if we let Pσ = f (Nσ), then

A=A P,

for the Souslin scheme P = (Pσ).

To see that any set A in AΠΠΠ0
1(X ) is analytic, consider (∗). If the Pσ are closed,

the condition
(α, x) ∈ F ⇔ ∀n ∈ N x ∈ Pα�n

defines a closed subset of NN×X such that A is the projection of F along NN.

Note that the Souslin scheme (Pσ) used in the previous proof has the additional
property that

σ ⊆ τ ⇒ Pσ ⊇ Pτ.

Such Souslin schemes are called regular. By replacing Pσ with

Qσ =
⋂

τ⊆σ
Pτ,

we obtain a Souslin scheme Q = (Qσ) with AQ =A P. Moreover, if the Pσ are
from a class Γ , and Γ is closed under finite intersections, then the Qσ are also
from Γ . In particular, any analytic set can be obtained from a regular Souslin
scheme of closed sets via the Souslin operation.
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Lecture 13: Regularity Properties of Analytic Sets

In this lecture we verify that the analytic sets are Lebesgue measurable (LM)
and have the Baire property (BP). Since both properties are closed under com-
plements, they also hold for the class of co-analytic sets ΠΠΠ1

1.

The analytic sets also have the perfect subset property (PS). As in the case of
the Borel sets, the proof uses different ideas and will therefore be presented in a
separate lecture. Besides, the perfect subset property for ΠΠΠ1

1 sets is no longer
provable in ZF.

For Borel sets, one proves (LM) and (BP) by showing that the class of sets having
(LM) (or (BP), respectively) forms a σ-algebra and contains the open sets. For
the analytic sets, this method is no longer available. We can, however, prove a
similar property with respect to the Souslin operation A, which can be seen as
an extension of basic set theoretic operations into the uncountable.

More specifically, we will achieve the following.

• Show that the Souslin operation A is idempotent, i.e. AA Γ = AΓ . This
implies that the analytic sets are closed under A.

• Show that the family of sets with (LM) (or (BP), respectively), is closed under
the Souslin operation. Since the closed sets have both properties, and the
Souslin operator is clearly monotone on classes, this yields the desired
regularity results.

Idempotence of the Souslin operation

Theorem 13.1: For every class Γ of subsets of various Polish spaces,

AAΓ =AΓ .

Proof. We clearly have Γ ⊆AΓ , so that we only need to prove AAΓ ⊆AΓ .

Suppose A=AP with Pσ ∈AΓ , that is, Pσ =AQσ,τ mit Qσ,τ ∈ Γ . Then

z ∈ A ⇔ ∃α∀m (z ∈ Pα|m)

⇔ ∃α∀m∃β ∀n (z ∈Qα|m,β |n)

⇔ ∃α∃β ∀m∀n (z ∈Qα|m,(β)m|n),

where (β)m denotes the m-th column of β .
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Now we contract the two function quantifiers to a single one, using a (com-
putable) homeomorphism NN ×NN, and the two universal number quantifiers
into a single one using the paring function 〈., .〉. Then A can be characterized as

z ∈ A ⇔ ∃γ ∀k(z ∈ Rγ|k)

where Rσ =Qϕ(σ),ψ(σ) ∈ Γ for suitable coding functions ϕ,ψ.

Corollary 13.2:
AΣΣΣ1

1 =ΣΣΣ
1
1.

Lebesgue measurability of analytic sets

We start with a lemma that essentially says that we can envelop any set with a
smallest (up to measure 0) measurable set.

Lemma 13.3: For every set A⊆ R there exists a set B ⊆ R so that

(i) A⊆ B and B is Lebesgue measurable,

(ii) if B′ is such that A ⊆ B′ ⊆ B and is Lebesgue measurable, then B \ B′ has
measure 0.

Proof. Suppose first that λ∗(A)<∞. For every n≥ 0, there exists an open set
On ⊇ A with λ∗(On) = λ(On)< λ∗(A)+1/n. Then B =

⋂

n On is measurable, and
λ(B) = λ∗(A). Furthermore, if A⊆ B′ ⊆ B, then λ∗(A)≤ λ∗(B′)≤ λ∗(B). If B′ is
also measurable, then

λ∗(B) = λ∗(B ∩ B′) +λ∗(B \ B′) = λ∗(B′) +λ∗(B \ B′),

hence λ∗(B \ B′) = 0.

If λ∗(A) =∞, let An = A∩ [m, m+ 1) for m ∈ Z. Then λ∗(Am)≤ 1, and we can
choose Bm ⊇ Am measurable such that λ∗(Bm) = λ∗(Am). Then B =

⋃

m∈Z Bm
has the desired property.

We now apply the lemma to show that Lebesgue measurability is closed under
the Souslin operation. The basic idea is to approximate the local ‘branches’ of
the Souslin operation on a Souslin scheme by measurable sets from outside,
in the sense of the lemma. It turns out that the total error we make by this
approximation is negligible, and hence the overall result of the Souslin operation
differs from a measurable set only by a nullset and hence is measurable.
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Proposition 13.4: The class LM of all Lebesgue measurable sets ⊆ R is closed
under the Souslin operation, i.e.

A LM ⊆ LM.

Proof. Let A = (Aσ) be a Souslin scheme with each Aσ measurable. We can
assume that (Aσ) is regular. For each σ ∈ N<N we let

Aσ =
⋃

α⊃σ

⋂

n∈N
Aα|n ⊆ Aσ.

Note that A〈∅〉 = AA. By the previous lemma, there exist measurable sets
Bσ ⊇ Aσ so that for every measurable B ⊇ Aσ, Bσ \ B is null.

By replacing Bσ with Bσ ∩ Aσ, we can further assume Bσ ⊆ Aσ. This makes
(Bσ) a regular Souslin scheme.

Now let Cσ = Bσ \
⋃

n∈N Bσ
_〈n〉. Each Cσ is a nullset, by the choice of the Bσ

and the fact that Aσ =
⋃

n∈N Aσ
_〈n〉 ⊆

⋃

n∈N Bσ
_〈n〉 . Hence C =

⋃

σ Cσ is a
nullset, too.

It remains to show that
B〈∅〉 \ C ⊆ A〈∅〉 =AA,

for this implies B〈∅〉 \A〈∅〉 ⊆ C is null, which in turn implies that A〈∅〉 is Lebesgue
measurable (since it differs from a measurable set by a nullset).

So let x ∈ B〈∅〉 \ C . Since x 6∈ C〈∅〉, there is an α(0) with x ∈ B〈α(0)〉.

Given α |n with x ∈ Bα|n , we can choose α(n) so that x ∈ Bα|n+1 . This is possible
because x 6∈ Cα|n . This way we construct α ∈ NN with

x ∈
⋂

n
Bα|n ⊆

⋂

n
Aα|n ⊆ A〈∅〉.

Corollary 13.5: Every analytic set is Lebesgue measurable.

Proof. By the idempotence of A, AΣΣΣ1
1 = AAΠΠΠ0

1 = AΠΠΠ0
1 = ΣΣΣ

1
1. On the other

hand, we have AΠΠΠ0
1 ⊆ALM= LM, since the Souslin operation is monotone on

classes. This yields ΣΣΣ1
1 ⊆ LM.
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Universally measurable sets

The previous proof is general enough to work for other kinds of measures on
arbitrary Polish spaces.

Given a Polish space X , a Borel measure on X is a countably additive set function
µ defined on a σ-algebra of the Borel sets in X . A set is µ-measurable if it can
be represented as a union of a Borel set and a µ-nullset. A measure µ is σ-finite
if X =

⋃

n Xn, where Xn is µ-measurable with µ(Xn)<∞. Lebesgue measure is
σ-finite Borel measure on the Polish space R.

A set A⊆ X is universally measurable if it is µ-measurable for every σ-finite
Borel measure on X .

Theorem 13.6 (Lusin): In a Polish space, every analytic is universally measurable.

Baire property of analytic sets

Inspecting the proof of Proposition 13.4, we see that it works for the Baire
property as well (with measure 0 replaced by meager, of course), provided we
can prove a Baire category version of Lemma 13.3.

Lemma 13.7: Let X be a Polish space. For every set A⊆ X there exists a set B ⊆ X
so that

(i) A⊆ B and B has the Baire property,

(ii) if Z ⊆ B \ A and Z has the Baire property, then Z is meager.

Proof. Let U1, U2, . . . be an enumeration of countable base of the topology for X .
Given A⊆ R set

A∗ := {x ∈ R: ∀i (x ∈ Ui ⇒ Ui ∩ A not meager)}.

Note that A∗ is closed: If x 6∈ A∗, then there exists i with x ∈ Ui & Ui ∩ A null. If
y ∈ Ui , then y 6∈ A∗, since Ui ∩ A is null. Hence Ui ⊆ ¬A∗.

We have
A\ A∗ =

⋃

{A∩ Ui : A∩ Ui meager},

which is a countable union of meager sets and hence meager.

If we let B = A∪A∗ = A∗∪ (A\A∗), then B is a union of a meager set and a closed
set and hence has the Baire property.
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Now assume B′ ⊇ A has the Baire property. Then C = B \ B′ has the Baire
property, too. Suppose C is not meager, then Ui \ C is meager for some i, and
hence also Ui ∩ A ⊆ (Ui \ C). Besides, Ui ∩ C 6= ;, for otherwise Ui ⊆ Ui \ C
would be meager. Thus there exists x ∈ Ui with x 6∈ A∗, which by definition of
A∗ implies that Ui ∩ A is not meager, a contradiction.

By adapting the proof of Proposition 13.4, we obtain the Baire category version
of Proposition 13.4 and hence can deduce that analytic sets have the Baire
property.

Proposition 13.8: In any Polish space X , the class BP of all sets ⊆ X with the
Baire property is closed under the Souslin operation, i.e.

A BP ⊆ BP.
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Lecture 14: The Projective Hierarchy

In Lecture 12 we saw that the analytic sets are not closed under complements,
which led us to the introduction of the co-analytic sets as a separate class.

We saw analytic sets are projections of closed sets and hence can be written as

x ∈ A ⇔ ∃α ∈ NN F(α, x),

where F ⊆ NN× X is closed. It follows that co-analytic sets can be written in the
form

x ∈ A ⇔ ∀α ∈ NN U(α, x),

for some open U ⊆ NN × X .

Using quantifier manipulations that allow to switch number and function quan-
tifiers,

∀m∃α P(m,α) ⇔ ∃β ∀m P(m, (β)m)

∃m∀α P(m,α) ⇔ ∀β ∃m P(m, (β)m),

we obtain that both the analytic sets and the co-analytic sets are closed under
countable unions and intersections.

We have seen (Proposition 12.2) that the analytic sets are closed under continu-
ous images. Taking continuous images of co-analytic sets, however, leads out of
the co-analytic sets.

Using continuous images (or rather, the special case of projections), we define the
projective hierarchy. Recall our notation ∃N for projection along N, with ∀N its
dual. We denote by ∃N

N
and ∀N

N
projection along NN and its dual, respectively.

ΣΣΣ1
1(X ) = ∃N

N
ΠΠΠ0

1(X )

ΠΠΠ1
n(X ) = ¬ΣΣΣ1

n(X )

ΣΣΣ1
n+1(X ) = ∃N

N
ΣΣΣ1

1(X )

∆∆∆1
n(X ) = ΣΣΣ1

n(X )∩ΠΠΠ
1
n(X )
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Hence a set P ⊆ X is

ΣΣΣ1
1 iff P(x)⇔∃α F(α, x) for a closed set F ⊆ NN × X ,

ΠΠΠ1
1 iff P(x)⇔∀α F(α, x) for an open set G ⊆ NN × X ,

ΣΣΣ1
2 iff P(x)⇔∃α∀β G(α,β , x) for an open set G ⊆ NN ×NN × X ,

ΠΠΠ1
2 iff P(x)⇔∀α∃β F(α,β , x) for a closed set F ⊆ NN ×NN × X ,

...

These characterizations clearly indicate a relation between being projective and
being definable in second order arithmetic using function quantifiers. We will
describe this relation in detail when we address the effective (‘lightface’) version
of the projective hierarchy.

Examples of projective sets

Here are a few examples of projective sets that occur naturally in mathematics.

Analytic sets:

• {K ⊆ X : K compact and uncountable} is a ΣΣΣ1
1 subset of the space K(X ) of

compact subsets of X .

• { f ∈ C[0,1]: f continuously differentiable on [0,1]} is a ΣΣΣ1
1 subset of

C[0,1].

Co-analytic sets:

• { f ∈ C[0, 1]: f differentiable on [0, 1]} is a ΠΠΠ1
1 subset of C[0, 1].

• { f ∈ C[0, 1]: f nowhere differentiable on [0, 1]} is aΠΠΠ1
1 subset of C[0, 1].

• WF = {α ∈ 2N : α codes a well-founded tree on N} is a ΠΠΠ1
1 subset of the

space Tr of trees, which can be seen as a closed subspace of 2N
<N

, and
hence is Polish. As we will see, the set WF is a prototypical ΠΠΠ1

1 set.

Higher levels:

• { f ∈ C[0, 1]: f satisfies the Mean Value Theorem [0, 1]} is a ΠΠΠ1
2 subset of

C[0,1].

(Here f satisfies the Mean Value Theorem if for all a < b ∈ [0,1] there
exists c with a < c < b such that f ′(c) exists and f (b)− f (a) = f ′(c)(b−
a).)
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The quantifier manipulations mentioned above yield the following closure prop-
erties.

Proposition 14.1:

(1) The classesΣΣΣ1
n are closed under continuous preimages, countable intersections

and unions, and continuous images (in particular, ∃N
N
).

(2) The classesΠΠΠ1
n are closed under continuous preimages, countable intersections

and unions, and co-projections ∀N
N
.

(3) The classes∆∆∆1
n are closed under continuous preimages, complements, count-

able intersections and unions. (In particular, they for a σ-algebra.)

To show that the hierarchy is proper, we need the existence of universal sets.

Proposition 14.2: For every Polish space X , there is a NN-universal set forΣΣΣ1
n and

for ΠΠΠ1
n.

Proof. By induction on n. We have seen that there exists a NN-universal set for
ΣΣΣ1

1. Now note that if U ∈ ΣΣΣ1
n(N
N × X ) is NN-universal for ΣΣΣ1

n(X ), then ¬U is
NN-universal forΠΠΠ1

n(X ), and if U ⊆ NN×NN× X is NN-universal forΠΠΠ1
n(N
N× X ),

then
V = {(α, z): ∃β (α,β , z) ∈ U}

is NN-universal for ΣΣΣ1
n+1.

Corollary 14.3: For every n≥ 1, ΣΣΣ1
n *ΠΠΠ1

n and ΠΠΠ1
n *ΣΣΣ1

n. Morever,

ΣΣΣ1
n (∆∆∆1

n+1 (ΣΣΣ1
n+1

ΠΠΠ1
n (∆∆∆1

n+1 (ΠΠΠ1
n+1

The proof is similar to the proofs of Theorem 10.7 and Corollary 10.8.

Regularity properties of projective sets

At first sight it does not seem impossible to extend the regularity properties (LM)
and (BP) to higher levels of the projective hierarchy. But we will soon see that
there are metamathematical limits that prevent us from doing so.
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Without explicitly mentioning it, up to now we have been working in ZF, Zermelo-
Fraenkel set theory, plus a weak form of Choice (ACω(NN)). If we add the full
Axiom of Choice (AC), we saw that the regularity properties do not extend to all
sets. Solovay’s model of ZF showed that the use of a strong version of Choice is
necessary for this.

On the other hand, the proofs gave us no direct indication how ‘complex’ the
non-regular sets we constructed are. In the next section we will start to study a
model of ZF in which exists a∆∆∆1

2 set which is neither Lebesgue measurable nor
does it have the Baire property. Therefore, we cannot settle in ZF the question
of whether the projective sets are measurable or have the Baire property. We
will have to add additional axioms.

A key feature in the construction of a non-measurable∆∆∆1
1 set is the use of the

well-ordering principle rather than the Axiom of Choice.

Proposition 14.4: Suppose <W⊆ R×R is a well-ordering of R of order-type ω1
in Γ , then there exists a subset of R in Γ that is neither Lebesgue measurable nor
has the Baire property.

Lebesgue measure here refers to the product measure λ×λ, which is the unique
translation invariant measure defined on the Borel σ-algebra generated by the
rectangles I×J , where I and J are open intervals, and (λ×λ)(I×J) = λ(I)λ(J).

Proof. Suppose <W is a well-ordering of R in Γ . Let A= {(x , y): x <W y}.

Since <W is of order type ω1, for every y ∈ R, the set Ay = {x : x <W y} is
countable, and hence of Lebesgue measure zero.

Fubini’s Theorem implies that if A⊆ R2 is measurable, then

(λ×λ)(A) =
∫

λ(Ay)dλ(y) = 0.

So if A is measurable, then (λ × λ)(A) = 0. The complement of A is ¬A =
{(x , y): x ≥W y}. As above, for any x ∈ R, ¬Ax = {y : x ≤W y} is countable,
and hence λ(¬Ax) = 0 for all x . Again, by Fubini’s Theorem, (λ×λ)(¬A) = 0,
and thus (λ × λ)(R) = (λ × λ)(A∪ ¬A) = (λ × λ)(A) + (λ × λ)(¬A) = 0, a
contradiction.

We can apply a similar reasoning for Baire category. The sections Ay and ¬Ax
are countable, and hence meager.

The following lemma provides a Baire category analogue to Fubini’s Theorem.
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Lemma 14.5: Let A⊆ R2 have the property of Baire. Then A is meager if and only
if Ax = {y : (x , y) ∈ A} is meager for all x except a meager set.

For a proof see (author?) [Kec95].

Therefore, if the Continuum hypothesis (CH) holds in a model and we can
well-order R (or NN, 2N) within a certain complexity (as a subset of R2), we can
find a non-regular set of the same complexity. The question now becomes how
(hard it is) to define a well-ordering of R, and of course if CH holds.
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Lecture 15: The Constructible Universe

A set X is first-order definable in a set Y (from parameters) if there exists a
first-order formula ϕ(x0, x1, . . . , xn) in the language of set theory (i.e. only using
the binary relation symbol ∈) such that for some a1, . . . , an ∈ Y ,

X = {y ∈ Y : (Y,∈) |= ϕ[y, a1, . . . , an]}.

Here (Y,∈) stands for the interpretation of Y as a structure of the language of
set theory, i.e. Y is a set and ∈ is interpreted as a binary relation over Y .

The constructible universe is built as a cumulative hierarchy of sets along the
ordinals. In each successor step, instead of adding all subsets of the current set,
only the definable ones are added. Formally, L is defined as follows. Given a set
Y , let

PDEF(Y ) = {X ⊆ Y : X is first order definable in Y from parameters},

where the underlying language is the language of set theory. Now put

L0 = ;
Lξ+1 = PDEF(Lξ)

Lξ =
⋃

ζ<ξ

Lξ (ξ limit ordinal)

Finally, let
L =

⋃

ξ∈Ord

Lξ.

Basic properties of L

The first Proposition tells us that the Lξ are set-theoretically nice structures and
linearly ordered by the ⊆-relation.

Proposition 15.1: For each ordinal ξ:

(1) Lξ is transitive.

(2) For ζ < ξ, Lζ ⊆ Lξ.

(3) For ζ < ξ, Lζ ∈ Lξ.
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(4) If ξ≥ω, then |Lξ+1|= |Lξ|.

Proof. We show the first two statements statements simultaneously by induction.
They are clear for ξ = 0 and ξ limit, so assume ξ = ζ+ 1. Suppose x ∈ Lζ.
Consider the formula ϕ(x0)≡ x0 ∈ x (here x is a parameter). ϕ defines the set

x ′ = {a ∈ Lζ : Lζ |= ϕ[a]}= {a ∈ Lζ : a ∈ x}.

By induction hypothesis, Lζ is transitive, and hence a ∈ x implies a ∈ Lζ, and
hence x ′ = x , so x ∈ Lζ+1. This yields Lζ ⊆ Lξ. Now if x ∈ Lξ, then x ⊆ Lζ, and
hence x ⊆ Lξ. Thus Lξ is transitive.

For the third statement, note that the formula ϕ(x0)≡ x0 = x0 defines Lζ in Lζ,
and hence Lζ ∈ Lζ+1.

Next, we show that L contains all ordinals and that ξ ‘shows up’ exactly after ξ
steps.

Proposition 15.2: For any ξ,

(1) ξ ⊆ Lξ,

(2) Lξ ∩Ord= ξ.

Proof. Clearly, (1) follows from (2). To show (2), one again proceeds by induc-
tion. Again, the statement is clear for 0 and limit ordinals, so assume ξ= ζ+ 1
and Lζ ∩ Ord = ζ. We need to show Lζ+1 ∩ Ord = ζ + 1 = ζ ∪ {ζ}. Since
Lζ ⊆ Lζ+1, we have ζ ⊆ Lζ+1 ∩Ord. On the other hand, since Lζ+1 ⊆ P(Lζ), we
have Lζ+1 ∩Ord ⊆ ζ+ 1. It thus remains to show that ζ ∈ Lζ+1.

We need a formula ϕOrd that defines the ordinals (in Lζ). Such is formula is
easily found by formalizing the statement

“x is transitive and linearly ordered by ∈.”

(Note that we assume that every set is well-founded.) It then seems that we
have

ζ= {a ∈ Lζ : Lζ |= ϕOrd[a]}, (∗)

and hence we can conclude ζ ∈ Lζ+1. The problem is that being an ordinal (i.e.
satisfying ϕOrd) in Lζ may not be the same as being an ordinal in general (in V ,
the universe of all sets).

The fact that (∗) nevertheless is true is a consequence of the absoluteness of ∆0
formulas for transitive sets. We address this important concept in detail next.
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Given a formula ϕ in the language of set theory and some class M , we can
relativize ϕ to ϕM essentially by restricting all quantifiers occurring in ϕ to
range over M , i.e. ∃x ψ becomes (∃x ∈ M)ψM , for example. We say a formula
ϕ(x0, . . . , xn) is absolute for M if for all a0, . . . , an ∈ M

ϕM (a0, . . . , an) holds ⇔ ϕ(a0, . . . , an) holds.

Unfortunately, even simple formulas like x ⊆ y can fail to be absolute. For
example, let M = {0, a}, where a = {{0}}. Then (a ⊆ 0)M (which is defined as
∀x ∈ M (x ∈ a → x ∈ 0)) but not a ⊆ 0.

However, if M is transitive, then many important formulas are absolute for M .
A formula is ∆0 if it contains no or only bounded quantifiers of the form ∀x ∈ v
or ∃x ∈ v, where x , v are set variables.

Proposition 15.3: If M is transitive and ϕ is ∆0, then ϕ is absolute for M.

Proof sketch. Clearly x = y and x ∈ y are absolute for any M . It is also not hard
to see that if ϕ and ψ are absolute for M , then so are ¬ϕ and ϕ ∧ψ. Hence all
quantifier free formulas are absolute.

Finally, if ϕ is absolute for M , so isψ≡ ∃x ∈ yϕ: IfψM (y, z̄) holds for y, z̄ ∈ M ,
then we have [∃x(x ∈ y ∧ ϕ(x , y, z̄))]M , i.e., ∃x ∈ M(x ∈ y ∧ ϕM (x , y, z̄)).
Since ϕM (x , y, z̄) if and only if ϕ(x , y, z̄), it follows that ∃x ∈ yϕ(x , y, z̄), i.e.
ψ.

Conversely, if for y, z̄ ∈ M , ∃x ∈ yϕ(x , y, z̄), then since M is transitive, x
belongs to M , and since ϕ(x , y, z̄) if and only ϕM (x , y, z̄), we have ∃x ∈ M (x ∈
y ∧ ϕM (x , y, z̄)) and so ψM (y, z̄).

On can show that “x is an ordinal.” is indeed definable by a ∆0 formula. Fur-
thermore, using the absoluteness of ∆0 formulas, one can also show that L is a
model of ZF. More formally, this means that for every axiom σ of ZF, ZF ` σL .

Theorem 15.4: For every axiom σ of ZF, ZF ` σL .

L is an inner model of ZF, that is, L is transitive, contains all ordinals, and
satisfies the axioms of ZF.

We can add to ZF the axiom that all sets are constructible, i.e.

∀x∃y (y is an ordinal ∧ x ∈ L y).
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This axiom is usually denoted by V = L. We may be tempted to think that L is
then trivially a model of ZF+V = L. But this is not at all clear, since this has to
hold relative to L, i.e. (V = L)L . This means that

∀x ∈ L ∃y ∈ L (y is an ordinal ∧ (x ∈ L y)
L).

But it might be that (x ∈ L y)L is not absolute, that is, viewed from inside L, not
every set may be definable. To show that (x ∈ L y)L is indeed absolute, one has
to carefully study the notion of definability. In particular, we have to show that
definability is definable.

The definability of L

Fix a Gödel numbering of set theoretic formulae. We can use it to formally define
syntactical notions such as the satisfaction relation. More precisely, given a set
X , let SATX : X<ω ×ω→ {0,1} be the binary valued (partial) function that is
defined for ((a1, . . . , an), e) iff e is the Gödel number of a formula ϕ with n free
variables and in this case

SATX (~a, e) = 1 iff X |= ϕ[~a]. (15.1)

While Tarski’s Theorem excludes the possibility that a structure X satisfying (a
sufficiently large fragment of) ZFC can define its own truth predicate, one can
formalize the satisfaction relation and show it works in a relativized environment
that has sufficient closure properties. To be more precise, based on the recursive
definition of the satisfaction relation one can devise a set theoretic formula
ϕSAT aiming at describing this relation formally. This formula will “work” in
any relativized environment, represented by a set Y , as long as Y satisfies some
basic closure properties – it has to be transitive, closed under formation of finite
sequences, and has to be able to address the Gödel numbers of formulas, i.e.
it contains the natural numbers. The latter can be ensured by requiring that
Vω ⊆ Y . Let us call such Y adequate.

Proposition 15.5: There exists a set theoretic formula ϕSAT(x0, x1) such that for
all adequate Y , whenever a0, a1 ∈ Y ,

Y |=ϕSAT[a0, a1] iff (1) a0 is transitive and

(2) a1 = SATa0
.
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Based on ϕSAT, one can devise a formula ϕDEF with the following properties:
Suppose Y is adequate. Then for all a0, a1 ∈ Y , if SATa0

∈ Y then

Y |=ϕDEF[a0, a1] iff (1) a0 is transitive and

(2) a1 = PDEF(a0).

In other words, first-order definability is definable. With regard to absoluteness
considerations, it is important to track the complexity of the formulas. It turns
out ϕDEF is provably equivalent in ZF to both a Σ1 and a Π1 formula of set theory.
In this case we say the predicate a1 = PDEF(a0) is ∆1.

It is not hard to see that for limit ξ, Lξ is adequate. One can use these closure
properties of Lξ at limit stages to show that Lξ can definably “recover” the
sequence of Lζ’s leading up to it.

Proposition 15.6: Suppose ξ is a limit ordinal, ξ > 0. Let G : Ord→ V be given
by ζ 7→ Lζ. Then for all ζ < ξ, G|ζ ∈ Lξ.

If a formula ϕ( x̄ , y) defines a function F( x̄) = y , then we say F is absolute for M
if ϕ is. (It is not hard to show that this is independent of the particular definition
of F .) One can in fact show that the function G is absolute for all transitive
models of ZF (it is ∆1).

Theorem 15.7: L is a model of ZF+V = L.

Proof. If x ∈ L, then there exists a limit ξ such that x ∈ Lξ. Since Ord ⊆ L, and
since G is absolute,

∀x ∈ L∃ξ ∈ L(x ∈ Lξ) ⇔ ∀x ∈ L∃ξ, y ∈ L(G(ξ) = y ∧ x ∈ y)

⇔ ∀x ∈ L∃ξ ∈ L [(x ∈ Lξ)
L].

A further consequence is that L is the smallest transitive class model of ZF.

Theorem 15.8: If M is any transitive proper class model of ZF, then L = LM ⊆ M.

The crucial fact used to prove Proposition 15.6 is that for transitive X ∈ Lξ,

SATX can be “reached” from X

within a finite number of iterations of the PDEF-operator. (15.2)
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From this it follows that SATX ∈ Lξ, and hence Lξ is closed under the SAT-
function.

Note that the proposition is not an immediate consequence of the definition of L.
Although we have that Lζ ∈ Lξ for all ζ < ξ, it is not clear at all that in Lξ one
can define the whole ensemble of the Lζ in first order terms. The proposition
says that we can definably recover them in Lξ: There is a formula ϕL(x0, x1)
such that for limit ξ, given a0, a1 ∈ Lξ,

Lξ |= ϕL[a0, a1] iff a0 is an ordinal and a1 = La0
.

As a consequence, one can devise a sentence ϕV=L that identifies precisely the
limit levels of the constructible hierarchy: For any transitive set Y ,

Y |= ϕV=L iff Y = Lξ for some limit ordinal ξ.

This last fact has a far-reaching implication.

Theorem 15.9 (Gödel Condensation Lemma): For every limit ordinal ζ, every
elementary substructure of (Lζ,∈) is isomorphic to an (Lη,∈) for some η≤ ζ.

The canonical well-ordering of L

Every well-ordering on a transitive set X can be extended to a well-ordering
of PDEF(X ). Note that every element of PDEF(X ) is determined by a pair (ψ, ~a),
where ψ is a set-theoretic formula, and ~a = (a1, . . . , an) ∈ X<ω is a finite
sequence of parameters. For each z ∈ PDEF(X ) there may exist more than one
such pair (i.e. z can have more than one definition), but by well-ordering the
pairs (ψ, ~a), we can assign each z ∈ PDEF(X ) its least definition, and subsequently
order PDEF(X ) by comparing least definitions. Elements already in X will form an
initial segment. Such an order on the pairs (ψ, ~a) can be obtained in a definable
way: First use the order on X to order X<ω length-lexicographically, order the
formulas through their Gödel numbers, and finally say

(ψ, ~a)< (ϕ,~b) iff ψ< ϕ or (ψ< ϕ and ~a < ~b).

Based on this, we can order all levels of L so that the following hold:

(1) <L |Vω is the canonical well-order on Vω.

(2) <L |Lζ+1 is the order on PDEF(Lζ) induced by <L |Lζ.

(3) <L |Lζ =
⋃

ζ<ξ <L |Lζ for a limit ordinal ξ > ω.
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It is straightforward to verify that this is indeed a well-ordering on L. But more
importantly, for any limit ordinal ξ > ω, <L |Lξ is definable over Lξ. To facilitate
notation, we denote the restriction of <L to some Lξ by <ξ.

Proposition 15.10: There is a Σ1 formula ϕ<(x0, x1) such that for all limit
ordinals ξ > ω, if a, b ∈ Lξ,

Lξ |= ϕ<[a, b] iff a <ξ b.

The proof of this proposition is similar to the proof that the sequence of (Lζ)ζ<ξ
is definable in Lξ. It relies on the strong closure properties of Lξ under the
SAT-function.

Theorem 15.11: If V = L then AC holds.

The Continuum Hypothesis in L

We show that the Generalized Continuum Hypothesis (GCH) holds if V = L.

Theorem 15.12 (Gödel): If V = L, then for any ordinal ξ, 2ℵξ = ℵξ+1.

Proof sketch. Suppose A ⊆ L ∩ ℵξ. Since we assume V = L, there exists limit
δ > ℵξ such that A ∈ Lδ. Let X = ℵξ ∪ {A}. By choice of δ, X ⊆ Lδ. The
Löwenheim-Skolem Theorem (and a Mostowski collapse – see Lecture 16) yields
a set M such that

- (M ,∈) is a transitive, elementary substructure of (Lδ,∈),

- X ⊆ M ⊆ Lδ,

- |M |= |X |.

The Condensation Lemma 15.9 yields that M = Lζ for some ζ≤ δ.

Lemma 15.13: For all ξ≥ω, |Lξ|= |ξ|.

Proof of Lemma. We know that ξ ⊆ Lξ. Hence |ξ| ≤ |Lξ|. To show |ξ| ≥ |Lξ|,
we work by induction on ξ.

If ξ= δ+ 1, then by Proposition 15.1 (4), |Lξ|= |Lδ|= |δ| ≤ |ξ|.

If ξ is limit, then Lξ is a union of |ξ| many sets of cardinality ≤ |ξ| (by inductive
hypothesis), hence of cardinality ≤ |ξ|.
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Applying the lemma to M = Lζ, we obtain

|ζ|= |Lζ|= |M |= |X |= ℵξ < δ.

Therefore, A⊆ Lζ, |ζ|< ℵξ, which means that every subset of L∩ℵξ appears (is
constructed) at an ordinal < ℵξ+1, and therefore L ∩P(ℵξ) ⊆ Lℵξ+1

, and hence,
by the Lemma,

|L ∩P(ℵξ)| ≤ |Lℵξ+1
|= ℵξ+1.

In the previous proof we have used the Axiom of Choice in various places
(Löwenheim-Skolem, proof of the lemma), but since V = L implies AC, this is
not a problem.
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Lecture 16: Constructible Reals

In this lecture we transfer the results about L to the projective hierarchy. The
main idea is to relate sets of reals that are defined by set theoretic formulas to
sets defined in second order arithmetic.

The effective projective hierarchy

We have seen that the Borel sets of finite order correspond to the sets definable
(from parameters) by formulas using only number quantifiers (arithmetical
formulas). A similar relation holds between projective sets and sets definable
by formulas using both number and function quantifiers. In fact, the way we
defined the projective hierarchy makes this easy to see.

Historically, however, the topological approach and the definability approach
happened separably, the former devised by the Russian school of Souslin, Lusin,
and others, while the effective approach was pursued by Kleene. Kleene named
the sets definable over second order arithmetic the analytical sets, which to this
day is a source of much confusion.

Definition 16.1 (Kleene): A set A ⊆ NN is Σ1
n if there exists an arithmetical

formula ϕ(α,β1, . . . ,βn) such that

α ∈ A ⇔ ∃β1∀β2 . . .Qβn ϕ(α,β1, . . . ,βn)

where Q is ∃ if n is odd and Q is ∀ if n is even. Similarly, A⊆ NN is Π1
n if there

exists an arithmetical formula ϕ(α,β1, . . . ,βn) such that

α ∈ A ⇔ ∀β1∃β2 . . .Qβn ϕ(α,β1, . . . ,βn)

where Q is ∀ if n is odd and Q is ∃ if n is even. A set that is Σ1
n and Π1

n at the
same time is called ∆1

n. A set A is analytical if it is Σ1
n or Π1

n.

It is often useful only having to deal with analytical predicates of certain form.
Kleene provided normal forms of analytical predicates.

Proposition 16.2 (Kleene): Every analytical predicate A(α) is equivalent to one
of the following forms:

∃β∀mψ(α,β , m) ∃β∀γ∃mψ(α,β ,γ, m) . . .

θ (α,β ,γ, m)

∀β∃mψ(α,β , m) ∀β∃γ∀mψ(α,β ,γ, m) . . .
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where θ is arithmetic, and ψ is a formula whose quantifiers (if any) are bounded
number quantifiers.

The Normal Form is proved by applying a sequence of quantifier manipulations.
We provide a sufficient list:

∀m∃αϕ(α, m) ⇔ ∃α∀mϕ((α)m, m)

∃mϕ(m) ⇔ ∃αϕ(α(0))
∃α∃β ϕ(α,β) ⇔ ∃γϕ((γ)0, (γ)1)

∃m∃nϕ(m, n) ⇔ ∃kϕ((k)0, (k)1)

Each rule has a dual obtained by flipping the quantifiers. The quantifier manipu-
lations can also be used to show

Proposition 16.3 (Kleene): A set A⊆ NN is definable over second order arithmetic
if it is analytical.

The following theorem complements Theorem 9.9. It is an immediate conse-
quence of the definition of the classes ΣΣΣ1

n and ΠΠΠ1
n.

Theorem 16.4: A set A⊆ NN is ΣΣΣ1
n (ΠΠΠ

1
n) if and only if it is definable in γ by a Σ1

n
(Π1

n) formula, for some γ ∈ NN.

The set of constructible reals

What is the complexity of the set NN ∩ L? In particular, is it in the projective
hierarchy? The set of all constructible reals is defined by a Σ1 formula over set
theory:

ϕ(x0)∃y [y is an ordinal ∧ x0 ∈ L y ∧ x0 is a set of natural numbers ].

We would like to replace this formula by an “equivalent” one in the language of
second order arithmetic. In particular, we would like to replace the quantifier
∃y by a quantifier over a real number.

The key for doing this is the fact that every constructible real shows up at a
countable stage of L: Since CH holds in L, L∩P(ω) ⊆ Lω1

. Hence if α ∈ L∩NN,
there exists a countable ξ such that α ∈ Lξ. Since |ξ| = |Lξ|, Lξ is countable,
too. Hence we can hope to replace Lξ by something like “there exists a real that
codes a model that looks like Lξ”.
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A set theoretic structure is simply a set X with a binary relation (the interpretation
of ∈). If X is countable (infinite), we can assume X =ω, and then any α ∈ NN

codes the set theoretic structure

(ω, Eα) where Eα = {〈m, n〉: α(〈m, n〉) = 0}.

We know from the previous lecture that there exists a sentence ϕV=L so that if Y
is a transitive set, Y |= ϕV=L if and only if Y = Lδ for some limit δ. But for an
arbitrary real α, Eα does not need to look anything like a set. It may even fail to
be well-founded as a relation. However, if Eα is well-founded and extensional,
then it looks very much like a (transitive) set.

The Mostowski collapse

Let E be a binary relation on a set X . Think of (X , P) as an intended model of set
theory. We would like E to behave like the ∈-relation for sets. For this purpose,
let for each x ∈ M

extE(x) = {y ∈ X : y E x}

If E behaves “set-like”, then it will respect the Axiom of Extensionality, i.e. two
sets are identical if and only if they have the same elements. Therefore we say
that E is extensional if

x , z ∈ X , x 6= z implies extE(x) 6= extE(z).

Furthermore, we want to exclude infinite descending E-chains. We say that E is
well-founded if

every non-empty set Y ⊆ X has an E-minimal subset.

Theorem 16.5: If E is an extensional and well-founded relation on a set X , then
there exists a transitive set S and a bijection π : X → S such that

x E y ⇔ π(x) ∈ π(y) for allx , y ∈ X .

Moreover, S and π are unique.

Proof. We construct π and S = im(π) by recursion on E, which is possible since
it is well-founded. (For details on recursion and induction on well-founded
relations, see (author?) [Jec03].) For each x ∈ X , let

π(x) = {π(y): y E x},
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and set S = im(π).

The injectivity of π follows from the extensionality of π by induction along E:
Suppose we have shown

∀z (zEx →∀y ∈ X (π(z) = π(y)→ z = y)).

and we have to show that it holds for x . Assume π(x) = π(y) for some y ∈ X .
Then

cEx → π(c) ∈ π(x) = π(y)
→ π(c) = π(z) for some zE y

→ c = z by Ind. Hyp., since cEx

→ cE y.

Similarly, we get cE y → cEx , hence x = y as desired due to the extensionality
of E. Finally we have

π(x) ∈ π(y) → π(x) = π(c) for some cE y

→ x = c since π is injective

→ x E y.

Thus π is an isomorphism.

To see the uniqueness of π and S, assume ρ, T are such that the statement of
the Theorem is satisfied. Then π ◦ρ−1 is an isomorphism between (T,∈) and
(S,∈).

Lemma 16.6: Suppose X , Y are sets, and θ is an isomorphism between (X ,∈) and
(Y,∈). Then X = Y and θ (x) = x for all x ∈ X .

Proof. By induction on the well-founded relation ∈. Assume that θ(z) = z for
all z ∈ x and let y = θ(x). We have x ⊆ y because if z ∈ x , then z = θ(z) ∈
θ(x) = y. We also have y ⊆ x: Let t ∈ y. Since y ∈ Y , there is z ∈ X with
θ(z) = t. Since θ(z) ∈ y, we have z ∈ x , and thus t = θ(z) = z ∈ x . Hence
x = y , and this also implies θ (x) = x .

The lemma, applied to π ◦ρ−1, yields S = T and π ◦ρ−1 = id, hence π = ρ
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Arithmetizing the satisfaction relation

We can now reformulate membership in L for reals as follows:

α ∈ L ∩NN ⇔ ∃β∃m [Eβ is an extensional and well-founded relation

∧ (ω, Eβ) |= ϕV=L ∧ πβ(m) = α],

where πβ is the Isomorphism of the Mostowski collapse of Eβ .

It remains to show that the notion occurring inside the square brackets are
definable in second order arithmetic.

Proposition 16.7:

(a) For any n ∈ N,

{(m,σ,γ) ∈ N×N<N ×NN : m= ðϕñ ∧ ϕ is Σn ∧ (ω, Eγ) |= ϕ[σ]}

is Σ0
n.

(b) If α ∈ NN and Eα is well-founded and extensional, then

{(m,γ) ∈ N×NN : πα(m) = γ}

is arithmetical in α.

Proof. See (author?) [Kan03].

The complexity of well-foundedness

It remains to define the properties “Eβ is extensional” and “Eβ is well-founded”

For the first one, notice that

Eβ is extensional ⇔ ∀m, n [∀k(kEβm ↔ kEβn) → m= n].

Hence it is arithmetical. On the other hand,

Eβ is well-founded ⇔ ∀γ ∈ NN ∃n∀m [γ(n)Eβγ(m)].

Hence being well-founded is a Π1
1 property. Putting everything together we now

have the following.

Theorem 16.8: The set L ∩NN is Σ1
2.
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In similar way we can show

Theorem 16.9: The set {(α,β) ∈ (L ∩NN)2 : α <L β} is Σ1
2.

If V = L, then the set is actually ∆1
2, since then

α <L β ⇔ α 6= β ∧ ¬(β <L α).

Finally, since V = L implies CH, we can use Proposition 14.4 to show the exis-
tence of non-measurable sets under V = L.

Corollary 16.10: If V = L, then there exists a∆1
2 set that is not Lebesgue-measurable

and does not have the Baire property.
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Lecture 17: Co-Analytic Sets

In the previous lecture we saw how to translate set theoretic definitions of sets
of reals into second order arithmetic. One can ask the converse question – does
definability in second order arithmetic imply constructibility? We will see that
this is indeed true for Σ1

2 definable reals. Along the way, we will prove a number
of interesting results about Π1

1 and Σ1
2 sets.

Normal forms

Analytic sets are projections of closed sets. Closed sets are in NN×NN are infinite
paths through trees on N×N, i.e. two-dimensional trees.

Definition 17.1: A set T ⊆ N<N ×N<N is a two-dimensional tree if

(i) (σ,τ) ∈ T implies |σ|= |τ| and

(ii) (σ,τ) ∈ T implies (σ |n,τ |n) ∈ T for all n≤ |σ|.

An infinite branch of T is a pair (α,β) ∈ NN ×NN so that

∀n ∈ N (α |n,β |n) ∈ T.

As in the one-dimensional case, we use [T] to denote the set of all infinite
paths through T . It follows that A⊆ NN is analytic if and only if there exists a
two-dimensional tree T on N×N such that

α ∈ A ⇔ ∃β (α,β) ∈ [T]
⇔ ∃β ∀n (α |n,β |n) ∈ T.

Another way to write this is to put, for given T and α ∈ NN,

T (α) = {τ: (α ||τ|,τ) ∈ T}.

Then we have, with T witnessing that A is analytic,

α ∈ A ⇔ T (α) has an infinite path ⇔ T (α) is not well-founded.

We obtain the following normal form for co-analytic sets.

Proposition 17.2: A set A⊆ NN isΠΠΠ1
1 if and only if there exists a two-dimensional

tree T such that
α ∈ A ⇔ T (α) is well-founded.
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If A is (lightface) Π1
1, then there exists a recursive such T , and the mapping

α 7→ T (α) is computable, as a mapping between reals and trees (which can be
coded by reals). This relativizes, i.e. for a Π1

1(γ) set, the mapping α 7→ T (α) is
computable in γ. Since computable mappings are continuous, we obtain that
the in the above proposition, the mapping α 7→ T (α) is continuous.

ΠΠΠ1
1-complete sets

How does one show that a specific set is not Borel? A related question is: Given
a definition of a set in second order arithmetic, how can we tell that there is not
an easier definition (in the sense that it uses less quantifier changes, no function
quantifiers etc.)? The notion of completeness for classes in Polish spaces provides
a general method to answer such questions.

Definition 17.3: Let X , Y be Polish spaces. We say a set A ⊆ X is Wadge
reducible to B ⊆ Y , written A ≤W B, if there exists a continuous function
f : X → Y such that

x ∈ A ⇔ f (x) ∈ B.

The important fact about Wadge reducibility is that it preserves classes closed
under continuous preimages.

Proposition 17.4: Let Γ be a family of subsets in various Polish spaces (such as
the classes of the Borel or projective hierarchy). If Γ is closed under continuous
preimages, then A≤W B and B ∈ Γ implies A∈ Γ .

Proof. If A≤W B via f , then A= f −1(B).

Definition 17.5: A set A⊆ X is Γ -complete is A∈ Γ and for all B ∈ Γ , B ≤W A.

Γ -complete sets can be seen as the most complicated members of Γ . For instance,
a ΠΠΠ1

1-complete set cannot be Borel, since otherwise every ΠΠΠ1
1 set would be Borel,

which we have seen is not true. More generally if Γ is any class in the Borel
or projective hierarchy, and A is Γ -complete, then A is not in ¬ Γ . For suppose
B ∈ Γ \ ¬ Γ . Then B ≤W A. If A were also in ¬ Γ , then B ∈ ¬ Γ , a contradiction.

If A⊆ NN×NN isNN-universal for come class Γ in the Borel or projective hierarchy,
then the set

{〈α,β〉: (α,β) ∈ A}
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is Γ -complete, where 〈., .〉 here denotes the pairing function for reals

〈α,β〉(n) =

¨

α(k) n= 2k,

β(k) n= 2k+ 1.

Since 〈., .〉 is continuous, and B ∈ Γ if and only if B = Aγ for some γ ∈ NN, we
have in that case that B ≤W A via the mapping

f (β) = 〈γ,β〉.

It follows that complete sets exist for all levels of the Borel and projective
hierarchy. However, the universal sets they are based on are rather abstract
objects. Complete sets are most useful when we can show that a specific property
implies completeness. We will encounter next an important example for the
class of co-analytic sets.

Well-founded relations and well-orderings

In the last lecture we encountered the property of a real coding a well-founded
relation: Recall that given β ∈ NN, Eβ(m, n) if and only if β(〈m, n〉) = 0. Let

WF= {β ∈ NN : Eβ is well-founded}.

Then
β ∈WF ⇔ ∀γ ∈ NN ∃n∀m [γ(n)Eβγ(m)],

and hence WF is Π1
1. A closely related set is

WOrd= {β ∈ NN : Eβ is a well-ordering}.

Then
β ∈WOrd ⇔ β ∈WF and Eβ is a linear ordering.

Coding a linear order is easily seen ΣΣΣ1
1, hence WOrd is Π1

1, too.

Theorem 17.6: The sets WF and WOrd are ΠΠΠ1
1-complete.

Proof. We have seen in Lecture 4 that a tree has an infinite path if and only if
the inverse prefix ordering is ill-founded. Trees can be coded as reals, and hence
Proposition 17.2 yields immediately that WF is Π1

1-complete.

For WOrd we use the Kleene-Brouwer ordering (see Lecture 4) and Proposition
4.5.
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The theorem lets us gain further insights in the structure of co-analytic sets. If
α ∈ NN codes a well-ordering on N, let

‖α‖= order type of well-ordering coded by α.

It is clear that ‖α‖<ω1. For a fixed ordinal ξ < ω1, we let

WOrdξ = {α ∈WOrd: ‖α‖≤ ξ}.

Lemma 17.7: For any ξ < ω1, the set WOrdξ is Borel.

Proof. Let α ∈ NN. We say m ∈ N is in the domain of Eα, m ∈ dom(Eα), if

∃n [mEαn ∨ nEαm].

It is clear from the definition of Eα that dom(Eα) is Borel. For ξ < ω1, let

Bξ = {(α, n): Eα |{m: mEαn} is a well-ordering of order type ≤ ξ}

We show by transfinite induction that every Bξ is Borel. Suppose Bζ is Borel for
all ζ < ξ. Then, since ξ is countable,

⋃

ζ<ξ Bζ is Borel, too. But

(α, n) ∈ Bξ ⇔ ∀m [mEαn ⇒ (α, m) ∈
⋃

ζ<ξ

Bζ],

and from this it follows that Bξ is Borel. Finally, note that

α ∈WOrdξ ⇔ ∀n [n ∈ dom(Eα) ⇒ (α, n) ∈ Bξ],

which implies that WOrdξ is Borel.

Corollary 17.8: Every ΠΠΠ1
1 set is a union of ℵ1 many Borel sets.

Proof. Since WOrd is ΠΠΠ1
1-complete, every co-analytic set A is the preimage of

WOrd for some continuous function f . We have

WOrd=
⋃

ξ<ω1

WOrdξ,

and hence
A=

⋃

ξ<ω1

f −1(WOrdξ).

Since continuous preimages of Borel sets are Borel, the result follows.
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If we work instead with the set

Cξ = {(α: α ∈WOrdξ or ∃n ∈ dom(Eα)

[Eα |{m: mEαn} is a well-ordering of order type ξ]},

then we get that WOrd=
⋂

ξ<ω1
Cξ, and hence

Corollary 17.9: EveryΠΠΠ1
1 set can be obtained as a union or intersection ofℵ1-many

Borel sets. Consequently, the same holds for every ΣΣΣ1
1 set.

Finally, the previous results allow us to solve the cardinality problem of co-
analytic sets at least partially.

Corollary 17.10: Every ΠΠΠ1
1 set is either countable, of cardinality ℵ1, or of cardi-

nality 2ℵ0 .
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Lecture 18: ΣΣΣ1
2 Sets

In this lecture we extend the results of the previous lecture to Σ1
2 sets.

Tree representations of ΣΣΣ1
2 sets

Analytic sets are projections of closed sets. Closed sets are in NN are infinite
paths through trees on ω.

We call a set A⊆ NN Y -Souslin if A is the projection ∃YN[T] of some [T], where
T is a tree on N× Y , i.e. A= ∃YN[T] = {α: ∃y ∈ YN (α, y) ∈ [T]}.

Theorem 18.1 (Shoenfield, 1961): Every ΣΣΣ1
2 set is ω1-Souslin. In particular, if A

is Σ1
2 then there is a tree T ∈ L on N×ω1 such that A= ∃(ω1)N[T].

Proof. Assume first A is Π1
1. There is a recursive tree T on N×N (and hence, in

L, since ‘being recursive’ is definable) such that

α ∈ A ⇔ T (α) is well-founded.

Hence, α ∈ A if and only if there exists an order preserving map π : T (α)→ω1.
We recast this in terms of getting an infinite branch through a tree. Let {σi : i ∈ N}
be a recursive enumeration of N<N. We may assume for this enumeration that
|σi| ≤ i. We define a tree eT on N×ω1 by

eT = {(σ,τ) : ∀i, j < |σ| [σi ⊃ σ j ∧ (σ ||σi |,σi) ∈ T → τ(i)< τ( j)]}.

It is easy to see that eT is in L, since it is definable from T and ω1. Furthermore,
if α ∈ A, then the existence of an order-preserving map π : T (α)→ω1 implies
that there is an infinite path (α,η) through eT . Conversely, if such a path (α,η)
exists, then it is easy to see that there is an order preserving map π : T (α)→ω1.
Hence we have

α ∈ A ↔ ∃η ∈ (ω1)
N (α,η) ∈ [eT] ↔ α ∈ ∃(ω1)N[eT],

so A is of the desired form.

Now we extend the representation to Σ1
2. If A is Σ1

2, then there is a Π1
1 set

B ⊆ NN × NN such that A = ∃N
N
B. Since B ∈ Π1

1, we can employ the tree

representation of Π1
1 to obtain a tree T over N×N×ω1 such that B = ∃(ω1)N[T ].

Now we recast T as a tree T ′ over N×ω1 such that ∃(ω1)N[T ′] = ∃(ω1)NB. This
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is done by using a bijection between N×ω1 and ω1. This way we can cast the
N×ω1 component of T into a single ω1 component, and thus transform the
tree T into a tree T ′ over N×ω1 such that ∃(ω1)N[T ′] = ∃(ω1)N[B].

ΣΣΣ1
2 sets as unions of Borel sets

We can use Shoenfield’s tree representation to extend Corollary 17.8 to Σ1
2 sets.

Theorem 18.2 (Sierpiński, 1925): Every Σ1
2 set is a union of ℵ1-many Borel sets.

Sierpinski’s original proof used AC. The following proof does not make use of
choice.

Proof. Let A⊆ NN be Σ1
2. By Theorem 18.1 there exists a tree T on N×ω1 such

that A= ∃(ω1)N[T]. For any ξ < ω1 let

Tξ = {(σ,η) ∈ T : ∀i ≤ |η|η(i)< ξ}.

Since the cofinality of ω1 is greater than ω (this can be proved without using
AC), every d :ω→ω1 has its range included in some ξ < ω1. Thus we have

A=
⋃

ξ<ω1

∃(ω1)N[Tξ].

For all ξ < ω1, the set ∃(ω1)N[Tξ] is Σ1
1, because the tree Tξ is a tree on a product

of countable sets and hence is isomorphic to a tree on N×N. By Corollary 17.9,
each Σ1

1 set is the union of ℵ1 many Borel sets, from which the result follows.

Again, an immediate consequence of this theorem is (using the perfect set
property of Borel sets):

Corollary 18.3: Every ΣΣΣ1
2 set has cardinality at most ℵ1 or has a perfect subset

and hence cardinality 2ℵ0 .

Absoluteness of Σ1
2 relations

Shoenfield used the tree representation of ΣΣΣ1
2 sets to establish an important

absoluteness result for Σ1
2 sets of reals.
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Suppose A⊆ NN is Σ1
2. Then, by the Kleene Normal Form there exists a bounded

formula ϕ(α,β0,β1, m) such that

α ∈ A ⇔ ∃β0∀β1 ∃m ϕ(α,β0,β1, m).

Let M be in inner model of ZF, i.e. M is transitive and contains all ordinals.
Since arithmetical formulas can be interpreted in ZF, M contains all recursive
predicates over N. In particular, since the truth of the bounded formula ϕ
depends only on finite initial segments of α,β0,β1, it defines a recursive predicate
Rϕ(α,β0,β1, m) = Rϕ(σ,τ0,τ1, m), which in turns defines a subset of N4 that
is contained in M . Hence we can define the relativization of A to M as

AM (α) ⇔ ∃β0 ∈ M ∀β1 ∈ M ∃m R(α,β0,β1, m).

We say that A is absolute for M if for any α ∈ M ,

AM (α) ⇔ A(α).

Absoluteness itself can be extended and relativized in a straightforward manner
to predicates analytical in some γ ∈ NN ∩M .

Theorem 18.4 (Shoenfield Absoluteness): EveryΣ1
2(γ) predicate and everyΠ1

2(γ)
predicate is absolute for all inner models M of ZFC such that γ ∈ M. In particular,
all Σ1

2 and Π1
2 relations are absolute for L.

Proof. We show the theorem for Σ1
2 predicates. For the relativized version, one

uses the relative constructible universe L[γ], see (author?) [Jec03] or (author?)
[Kan03].

Let A be a Σ1
2 relation. For simplicity, we assume that A is unary. Fix a tree

representation of A as a projection of a Π1
1 set. So, let T be a recursive tree on

N×N×N such that

α ∈ A ⇔ ∃β T (α,β) is well-founded.

Note that T is in M .

Now assume α ∈ M and α ∈ AM . So there is a β ∈ M such that T(α,β) is
well-founded in M . This is equivalent to the fact that in M there exists an order
preserving mapping π : T(α,β) → OrdM . Since M is an inner model and T
is the same in V and M , such a mapping exists also in V . Hence T(α,β) is
well-founded in V and thus α ∈ A.
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For the converse assume that α ∈ A∩M . Now we use the tree representation
of A given by Theorem 18.1. Let U ∈ L ⊆ M be a tree on N ×ω1 such that
A= ∃(ω1)NU . This means that for any α ∈ NN,

α ∈ A ⇔ U(α) is not well-founded.

So α ∈ A∩ M implies that there exists no order preserving map U(α) → ω1.
But then such a map cannot exist in M either. So, U(α) is a tree in M which is
ill-founded in the sense of M . Thus, by Shoenfield’s Representation Theorem
relativized to M , α ∈ AM .

Absoluteness for Π1
2 follows by employing the same reasoning, using that the

complement is Σ1
2.

By analyzing the proof one sees that it actually suffices that M is a transitive
∈-model of a certain finite collection of axioms ZF such that ω1 ⊆ M .

The result is the best possible with respect to the analytical hierarchy, since the
statement

∃α [α 6∈ L]

is Σ1
3, but cannot be absolute for M = L.

Shoenfield’s Absoluteness Theorem also holds for sentences rather than formulae,
with a similar proof. This means a Σ1

2 statement is true in L if and only if it holds
in V . This has an important consequence regarding the significance of principles
like CH for analysis. Many results of classical analysis are Σ1

2 statements. The
Absoluteness Theorem says that if they can be established under V = L (and
hence in a world where CH holds), they can be established in ZF alone.

Another consequence concerns the complexity of reals defined by analytical
relations.

Corollary 18.5: If X ⊆ ω is Σ1
2, then X ∈ L. In particular, every Σ1

2 real (and
hence every Π1

2 real) is in L.

Proof. Let X be Σ1
2 via some formula ϕ. Since ω ∈ L, and since L is an inner

model of ZF, it satisfies the axiom of separation (relativized to L) for ϕ. So
the set X L = {a ∈ ω : ϕL(a)} is in L. It is clear that the representation and
absoluteness results also hold for subsets of ω. (Change the notation to include
subsets of ω.) Absoluteness for ϕ implies that X L ∩ L = X ∩ L, but since X ⊆ω,
we have X = X ∩ L and X L ∩ L = X L , and hence X ∈ L.
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We cannot extend this to Σ1
2 sets of reals. In the proof of the Corollary, it is

crucial that ω, the set over which we apply separation, is in L. This is not longer
the case for sets of reals. For example, the set of all reals is clearly Σ1

2, but unless
V = L, it is not contained in L.
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Lecture 19: Recursive Ordinals and Ordinal Notations

We have seen that the property “α codes a well-ordering of N” is important for the
study of co-analytic sets. If A is ΠΠΠ1

1, then there exists a tree T on N×N such that

α ∈ A ⇔ T (α) is well-founded.

If T (α) is well-founded, then the Kleene-Brouwer ordering restricted to T is a
well-ordering. Since T (α) is a tree on N, it constitutes an ordering on N, using a
standard bijection between strings and natural numbers.

If A is moreover Π1
1, then there is a recursive such tree and the tree T(α) is

recursive in α. If α is recursive and α ∈ A, then T(α) encodes a recursive
well-ordering.

In general, we say an ordinal ξ < ω1 is recursive if there exists a recursive
α ∈ NN such that

Eα = {(m, n) ∈ N×N: α(〈m, n〉) = 0}

is a well-ordering of order type ξ.

Proposition 19.1: The recursive ordinals form a countable initial segment of the
class Ord of all ordinals.

Proof. Suppose ξ is a recursive ordinal. Let α ∈ NN be recursive so that the order
type of Eα is ξ. Let η < ξ. Since η ∈ ξ, there exists n such that Eα restricted to

{m: mEαn}

has order type η. Hence η is recursive via the relation

{(k, m): k, mEαn & kEαm}.

Thus the set of all recursive ordinals forms an initial segment of Ord. The initial
segment is countable since there are only countably many recursive relations.

There must exist a least non-recursive ordinal (which is countable). This ordinal
is called ωCK

1 . The CK stands for Church-Kleene.
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Ordinal Notations

The definition of a recursive ordinal is rather from outside. As we will see later,
deciding whether a recursive relation defines a well-ordering is quite difficult.

To get a better handle on recursive ordinals, we will construct them from inside.
The idea is that if we have constructed ξ, then we also know how to construct
ξ+ 1. If we have a sequence of ordinals (ξn) previously constructed, we can
also construct their limit, provided the sequence itself is constructive.

To make this precise, we introduce ordinal notations. A notation system for
ordinals assigns ordinals to natural numbers in a way that reflects how each
ordinal is built up from its predecessors. Our exposition in this part follows
(author?) [Rog87].

Definition 19.2 (Kleene): A system of notation S is a mapping νS from a set
DS ⊆ N onto an initial segment of Ord such that

(a) there exists a partial recursive function kS such that

νS(x) = 0 ⇒ kS(x) = 0

νS(x) successor ⇒ kS(x) = 1

νS(x) limit ⇒ kS(x) = 2;

(b) there exists a partial recursive function pS such that

νS(x) successor ⇒ [ps(x) ↓ & νS(x) = νS(pS(x)) + 1];

(c) there exists a partial recursive function qS such that

νS(x) limit ⇒ [qS(x) ↓ & ϕqS(x) total & (νS(ϕqS(x)(n)))n∈N
is an increasing sequence with limit νS(x)].

Given an ordinal notation x ∈ DS we can hence decide whether x codes a
successor or a limit ordinal (or 0), and we can determine a notation for the
predecessor of x (if x is a successor), or an index for a sequence of notations of
ordinals converging to the ordinal denoted by x .

Note that the conditions ensure that the ordinals with a notation in S actually
form an initial segment of Ord. This follows by induction. Note further that we
do not require νS to be one-one. An ordinal may receive multiple notations.
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Definition 19.3: An ordinal ξ is constructive if there exists a system of notation
that assigns at least one notation to ξ.

Of course there are many different systems of notation. We would like to have
one that encompasses all constructive ordinals, that is, a universal system.

Definition 19.4: A system of notation S is universal if for any system S′ there
is a partial recursive function ϕ such that ϕ(DS′) ⊆ DS and

x ∈ DS′ ⇒ νS′(x)≤ νS(ϕ(x))

Since systems are closed downwards, this means that S assigns a notation to
νS′(x), too.

It is a remarkable result due to Kleene that universal systems exist.

The system S1

We define the system S1 recursively.

- 0 receives notation 1.

- If all ordinals < ξ have received their notations then

(a) if ξ= η+ 1, ξ receives the notations {2x : x is a notation for η},

(b) if ξ is limit, ξ receives the notation 3 · 5y for each y such that for all
n, ϕy(n) is a notation and the ordinals denoted by the ϕy(n) form a
sequence with limit ξ.

The functions kS1
, pS1

, qS1
are easily defined as

kS1
(x) =



















0 x = 1

1 x = 2y

2 x = 3 · 5y

↑ otherwise

and
pS1
(2x) = x qS1

(3 · 5y) = y,

where pS1
(z) and qS1

(z) are undefined in all other cases.

One can show that S1 is universal (see (author?) [Rog87]). We will impose
additionally an ordering on the ordinal notations of S1. This will be useful later.
The result is the system O.
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The system O

We define simultaneously a system of notations and an ordering<O on notations.

- 0 receives notation 1.

- Suppose all ordinals < ξ have received their notations, and assume that
<O has been defined on these notations.

(a) if ξ = η+1, ξ receives the notations {2x : x is a notation for η}, and
set z <O 2x for z = x or z <O x .

(b) if ξ is limit, ξ receives the notation 3 · 5y for each y such that for all
n, ϕy(n) is a notation and the ordinals denoted by the ϕy(n) form a
sequence with limit ξ, and for all i < j,ϕy(i)<O ϕy( j). Furthermore,
for each such y, set z <O 3 · 5y for any z with z <O ϕy(n) for some
n.

The function kO, pO, qO are identical with kS1
, pS1

, qS1
.

We will denote DO by O, too. Instead of νO(x) we write |x |O. <O is a partial
ordering on O. Its transitivity follows from the definition of <O. An effective
limit of ordinals with notations in O can (and does) have many possible indices.
This makes the ordering non-linear. This is reflected in the following diagram of
the initial structure of <O.

1<O 2<O 22 <O . . .

�

3 · 5y1 <O 23·5y1
<O 223·5y1

<O . . .

3 · 5y2 <O 23·5y2
<O 223·5y2

<O . . .
...

3 · 5y1 and 3 · 5y2 are two of the infinitely many notations for ω. Any index y of
the recursive function that maps x to x-many iterations of n 7→ 2n constitutes
a notation 3 · 5y of ω. For this reason |x |O < |y|O does not necessarily imply
x <O y .

However, it is easy to see that x <O y implies |x |O < |y|O. Since an infinite
descending sequence in <O would induce an infinite descending sequence in
Ord, we have

Proposition 19.5: The relation <O is well-founded.
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This allows us to prove facts about <O via induction along a well-founded
relation.

Proposition 19.6: Let y ∈ O. Then

(a) the restriction of <O to {x : x <O y} is linear;

(b) the restriction of O to <O to {x : x <O y} is one-one.

Proof. (a) We proceed by induction along <O. Suppose x1, x2 <O y. If y = 2z,
then z <O y and by definition of <O if v <O 2z then v ≤O z. Hence x1, x2 ≤O z
and we can apply the induction hypothesis. If y = 3 · 5z, then by definition of
<O there exist n1, n2 such that x1 <O ϕz(n1) and x2 <O ϕz(n2). Wlog n1 < n2.
Then, by the condition for y to be a notation we have ϕz(n1) <O ϕz(n2), and
hence x1, x2 <O ϕz(n2), and we can apply the induction hypothesis.

(b) This is an easy induction – each step in the definition of O,<O defines
a notation for an ordinal larger than all ordinals having received a notation
before.

We can also show

Proposition 19.7: The restriction of<O to {y : y <O x} is uniformly r.e., i.e. there
exists a recursive function f such that for all x, if x ∈ O then Wf (x) = {y : y <O x}.

We defer the proof for a while to discuss the use of the Recursion Theorem.

Effective Transfinite Recursion

The Recursion Theorem plays an essential role in computations with ordinal
notations. To see why, consider the following problem. We would like to
introduce a (partial) recursive function +O that mirrors the addition of ordinals
on the notational side. More specifically we would like a function +O such that
for all x , y ∈ O,

(a) x +O y ∈ O,

(b) |x +O y|O = |x |O + |y|O, and

(c) y 6= 1 implies x <O x +O y .

The obvious way to define such a function +O is by recursion. Suppose we fix
x and try to define x +O y. It is clear that x +O 1 = x . If y = 2z, we define
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x +O y = 2x+Oz. Now suppose y = 3 · 5z. To match the definition of ordinal
addition, we have to put x +O y to be the “limit” of the notations x +Oϕz(n). In
other words, we have to set x+O y = 3·5e, where e is an index of the computable
mapping n 7→ x +O ϕz(n). Hence to determine e, we need an index for the very
function we are trying to build!

This is where the Recursion Theorem is indispensable. It ensures us that we know
such an index “beforehand”. The following theorem captures this possibility of
effective transfinite recursion.

Theorem 19.8 (Effective transfinite recursion): Let R be a well-founded relation
defined on a subset of N. Suppose F : N→ N is a (total) recursive function. Suppose
further that for all e ∈ N and x ∈ dom(R),

∀y R x ϕe(y) ↓ ⇒ ϕF(e)(x) ↓ .

Then there exists a c ∈ N such that

∀x ∈ dom(R) ϕc(x) ↓ and ϕc = ϕF(c).

The idea is that if we have efficiently constructed a function (i.e. an index e)
below x , and given this index we effectively compute an extension to x (via
ϕF(e)), then we actually succeeded in effectively constructing a function defined
on all of dom(R). This is precisely the situation we are facing in the definition
of x +O y .

Proof. By the Recursion Theorem there exists a c such that ϕc = ϕF(c). If ϕc(x)
were undefined for some x ∈ dom(R), then, since R is well-founded, there must
exist an R-minimal such x . This implies that ϕc(y) is defined for all y R x , and
hence by assumption, ϕF(c)(x) ↓. Since ϕF(c) = ϕc , this is a contradiction.

Armed with effective transfinite recursion, we can give a formal construction
of the function +O. Using the S-m-n Theorem, we can fix an injective function
h : N3→ N such that

ϕh(e,x ,d)(y) = ϕe(x ,ϕd(y)) for all e, x , d, y ∈ N.

Let F be a recursive function such that for all e,

ϕF(e)(x , y)'



















x if y = 1,

2ϕe(x ,z) if y = 2z ,

3 · 5h(e,x ,z) if y = 3 · 5z ,

7 otherwise.
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Let c be a fixed point of F and put x +O y = ϕc(x , y). It is straightforward to
verify that this definition of +O has the desired properties. Note that for the
definition to work, it is essential that we can distinguish effectively between
codes for 0, successor, and limit ordinals (the recursiveness of kO).

Maybe surprisingly, +O turns out to be total. Suppose 〈x , y〉 is minimal (with
respect to the usual ordering of N) so that x +O y is undefined. Since h is total,
the only way for x +O y to be undefined is for y to be of the form 2z. But this
means ϕc(x , z) ↑, and hence x+Oz is undefined for some lesser pair 〈x , z〉, under
the standard pair coding function.

We can use +O to prove the universality of O.

Proposition 19.9: O is a universal system of notation.

Proof. Let S be a system of notation. Again, we use effective transfinite recursion.
Let h be a recursive function such that

ϕh(e)(0) = ϕe(ϕqS(x)(0)),

ϕh(e)(x + 1) = ϕh(e)(x) +O +ϕe(ϕqS(x)(x + 1)).

Recall that +O is total. Define a recursive function F such that

ϕF(e)(x)'



















1 if kS(x) = 0,

2ϕe(pS(x)) if kS(x) = 1,

3 · 5h(e) if y = 3 · 5z ,

↑ otherwise.

The Recursion Theorem yields a fixed point ϕF(c) = ϕc . Then ϕc is the desired
reduction. Suppose not. Then there exists an least ξ such that νS(x) = ξ
for some x , but |ϕc(x)|O < νS(x). If ξ = η+ 1, then ϕc(x) = 2ϕc(pS(x)), and
|ϕc(pS(x))|O < |ϕc(x)|O ≤ η = νS(pS(x)), contradicting the fact that ξ was
chosen minimal. The case that ξ is limit is similar.

Finally, we give a proof of Proposition 19.7.

Proof of Proposition 19.7. We follow (author?) [Sac90]. We claim that there
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exists a recursive function f such that

Wf (1) = ;,
Wf (2x ) =Wf (x) ∪ {x},

Wf (3·5x ) =
⋃

{Wf (ϕx (n)) : ϕx(n) ↓}.

It follows by induction along<O that such f satisfies the assertion of the theorem.
Choose an index e0 and recursive functions h0, h1 such that

We0
= ;,

Wh0(e,x) =Wϕe(x) ∪ {x},

Wh1(e,x) =
⋃

{Wϕe(ϕx (n)) : n ∈ N}.

Here Wϕe(x) = ; if ϕe(x) ↑; similarly for Wϕe(ϕx (n)). There exists a recursive
function F such that

ϕF(e)(x)'



















e0 if x = 1,

h0(e, z) if x = 2z ,

h1(e, z) if x = 3 · 5z ,

0 otherwise.

Let c be a fixed point of F and define f (x) = ϕc(x). Note that f is total because
h0, h1 are.

The last two result puts us in a position to prove

Theorem 19.10: A constructive ordinal is recursive.

Proof. Letα be a constructive ordinal. SinceO is universal, it assignsα a notation,
say x . By Proposition 19.7 the set set Ox = {y : y <O x} is r.e. A slight variation
of the proof of Proposition 19.7 yields that the set O<x = {〈y, z〉: y <O z <O x}
is r.e., too. We may assume that Ox is infinite. By Proposition 19.6 O<x is well-
founded and linear, hence a well-ordering. An easy induction shows that the
order type of O<x is |x |O = α. Let f be recursive, one-one such that ran( f ) = Ox .
Put

m R n ⇔ 〈 f (m), f (n)〉 ∈ O<x .

Since Ox = ran( f ) is the domain of O<x and O<x is r.e., it follows that R is a
recursive well-ordering of order type α.

19 – 8



We will see in the next lecture that the converse is also true. This will be a
consequence of the completeness properties of O, which we study next.
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Lecture 20: Π1
1 Sets of Natural Numbers

In this lecture we consider Π1
1 sets of natural numbers. They are defined just

like their counterparts in NN. Using the Kleene Normal Form, a set X ⊆ N is Π1
1

if there exists a bounded formula ϕ(x , y,β , ) such that

x ∈ X ⇔ ∀β∃y ϕ(x , y,β).

One can show that equivalently, there exists a recursive relation R(x , y,β) such
that

x ∈ X ⇔ ∀β∃y R(x , y,β).

Σ1
1 sets are given analogously.

Recursive relations are those that are Σ0
1 and Π0

1 at the same time, i.e. that are
∆0

1. There are recursive relations that are not definable by bounded formulas.
Hence the above equivalence requires a little bit of work, for which we refer to
(author?) [Kan03].

On the other hand, one can show that a relation R(x , y,β) is recursive if and
only there exists an e such that for all x , y,β , Φβe (x , y) ↓ and

R(x , y,β) ⇔ Φβe (x , y) = 0.

The truth of the right hand side depends only on a finite initial segment of β (the
use principle). This is reflected by the Kleene T -predicate. This is a recursive
predicate T such that, for some recursive function U ,

Φβe (x , y)' 0 ⇔ ∃s [T (e, x , y, s,β |s) & U(s) = 0].

Hence we have (using quantifier contraction) that X ⊆ N is Π1
1 if and only if

there exists a recursive predicate R∗ such that

x ∈ X ⇔ ∀β∃y R∗(x , y,β |y).

This allows us to derive a tree representation similar to the case of Baire space.
Namely, let

σ ∈ S(x) ⇔ ∀i < |σ| ¬R∗(x ,σ |i , i).

Then S(x) is a recursive tree for each x , and

x ∈ X ⇔ S(x) is well-founded.
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Kleene’s O and well-founded relations

The above normal form reduces deciding membership in a Π1
1 set to deciding

whether a recursive predicate is well-founded. We will now show that O can
decide the latter question in a uniform way.

Let the e-th r.e. relation Re(x , y) be given by

x Re y ⇔ Re(x , y) ⇔ ϕe(x , y) ↓ .

As before, the domain of Re, dom(Re) is given as

dom(Re) = {x : ∃y Re(x , y)∨ Re(y, x)}.

Note that dom(Re) is r.e., too.

Let WFN = {e : Re is well-founded}. We want to show that WFN reduces to O.
To this end we define, uniformly, an effective order-preserving mapping f from
dom(Re) into O. We do this by effective transfinite recursion. Let h(e, n) be a
recursive function such that

Rh(e,n)(x , y) ⇔ Re(x , n) & Re(y, n) & Re(x , y),

where Rh(e,n) is empty if n 6∈ dom(Re). Rh(e,n) is the initial segment of Re below
n. Clearly the Rh(e,n) are uniformly enumerable. Since we can enumerate Re by
enumerating the Rh(e,n), the idea is to define f on the Rh(e,n), and then extend f
to Re by transfinite recursion.

The images of the Rh(e,n) will be r.e., too. Moreover, we can enumerate these
images uniformly, obtaining an r.e. subset of O. To extend our mapping f to Re,
we need an effective way to find, given an r.e. subset W of O, an element of O
“on top” of W .

The next lemma shows that we can do this in a uniform way.

Lemma 20.1: There exists a recursive function g such that

(a) g(e) ∈ O if and only if We ⊆ O,

(b) If g(e) ∈ O, then |x |O < |g(e)|O for all x ∈We.

Proof. We use recursion along the +O function, summing the elements of We.
To ground the recursion, we first add 1 to We: Let r(e) be recursive such that
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ran(ϕr(e)) =We ∪ {1} and ϕr(e)(0) = 1. Now define a recursive function s such
that

ϕs(e)(0) = ϕr(e)(0) = 1,

ϕs(e)(n+ 1) = ϕs(e)(n) +O 2ϕr(e)(n+1).

We put g(e) = 3 · 5s(e).

We verify (a). Suppose g(e) ∈ O. Then ϕs(e)(n) ∈ O for all n. It is not hard to
show that x +O y ∈ O if and only if x , y ∈ O. Therefore, 2ϕr(e)(n) ∈ O and hence
ϕr(e)(n) ∈ O for all n. Now assume We ⊆ O. It follows that for each n, ϕr(e)(n) ∈
O. By the properties of +O, ϕs(e)(n) for all n and ϕs(e)(n)<O ϕs(e)(n+1). Hence
g(e) ∈ O.

For (b), suppose g(e) ∈ O. By definition of g we have g(e) >O 1, so let 1 6=
a ∈ We. We can choose n > 0 such that ϕr(e)(n) = a. By definition of g,
g(e)>O ϕs(e)(n) for all n. We have

ϕs(e)(n) = ϕs(e)(n− 1) +O 2a.

Therefore 2a ≤O g(e) and thus a <O g(e).

We have to deal with the possibility that dom(Re) is empty, in wich case our
recursion would get stuck at the very beginning and not return a value. We
prevent this by dealing with this case explicitly. Let t be recursive such that

Wt(b,e) =

¨

; if Re = ;,
{ϕb(h(e, n)): n ∈ N} otherwise.

Think of b as an index for f . We choose a recursive function k such that

ϕk(b)(e)' g(t(e, b)).

Let c be a fixed point of k. We put

f (e) = ϕc(e),

t(e) = t(c, e).

Then

Wt(e) =

¨

; if Re = ;,
{ f (h(e, n)): n ∈ N} otherwise,

and hence f (e) = g(t(e)).
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Suppose Re is well-founded. If dom(Re) = ;, then Wt(e) = ; ⊆ O and f (e) ∈ O
by the Lemma. If Re 6= ;, then it follows by induction that Rh(e,n) ⊆ O for all n,
and by definition of f , f (e) ∈ O, using Lemma 20.1.

If, on the other hand, f (e) ∈ O, then, by Lemma 20.1, | f (e)|O > |a|O for all
a ∈ Wt(e). But the elements of Wt(e) are precisely the numbers f (h(e, n)). By
transfinite induction on <O, this means that each Rh(e,n) is well-founded. Hence
Re is well-founded.

Summing up, we have shown

Theorem 20.2: WFN many-one reduces to O.

The proof of Theorem 20.2 also yields that | f (e)|O bounds the rank ρ(Re) of Re,
provided Re is well-founded. The rank of Re in this case is simply the rank of
the corresponding tree.

Corollary 20.3: There exists a recursive function f such that if Re is well-founded,
then ρ(Re)≤ | f (e)|O.

Theorem 20.2 also lets us show that every recursive ordinal is constructive.

Proposition 20.4: Every recursive ordinal is constructive.

Proof. Suppose ξ is recursive. Let R be a recursive well-ordering of N of order-
type ξ. Since a well-ordering is well-founded, the previous corollary yields an
x ∈ O with |x |O > ξ (namely x = 2 f (e) for R = Re). Hence ξ receives a notation
and is thus constructive.

Kleene’s O is Π1
1-complete

We now use the previous result to show that O is many-one complete for all Π1
1

subsets of N. First, we establish that O is in fact a Π1
1 set.

Proposition 20.5: O and <O are Π1
1 sets.

Proof. First note that O= dom(<O) and

x ∈ dom(<O) ⇔ ∃y[x <O y ∨ y <O x].

Since Π1
1 sets are closed under projection along N, ∃N, <O being Π1

1 implies that
O is Π1

1.
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Let h be recursive such that if x ∈ O,

Wh(x) =

Theorem 20.6: For every Π1
1 set X ⊆ N there exists a recursive function f such

that
x ∈ X ⇔ f (x) ∈ O.

Proof. By the Normal Form given at the beginning of this Lecture,

x ∈ X ⇔ S(x) is well-founded.

The tree S(x) is recursive uniformly in x , so there exists a recursive function
t such that S(x) = Rt(x), where Re is the eth recursively enumerable binary
relation on N. If we let f be a reduction from WFN to O. Then

x ∈ X ⇔ f (t(x)) ∈ O.

It is clear from the proof that WFN is also a Π1
1 complete set.

Corollary 20.7: O is not Σ1
1.

Proof. Similar to showing that WF is not Σ1
1 – exhibit a Π1

1 subset of N that is
not Σ1

1. This can be done using the universality of the Kleene T -predicate.
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Lecture 21: Co-analytic Ranks

In the previous lecture we learned about how Π1
1 set can be analyzed in terms of

countable ordinals. In this lecture we will deepen this analysis. We will develop
the theory of Π1

1-ranks, which is a powerful tool in descriptive set theory. We
can view the recursive function f that we constructed in the proof of Theorem
20.2 as the central fact:

If Re is well-founded, then ρ(Re)≤ | f (e)|O (∗)

Boundedness Principles

We start by picking up the observation made in Lemma 20.1. It states that r.e.
subsets of O are uniformly bounded: Given an index e of an r.e. subset of O,
we can compute uniformly in e a ordinal bounding all ordinals denoted by We.
We can strengthen this to Σ1

1 sets.

Theorem 21.1 (Spector): If X ⊆ O is Σ1
1, then there exists b ∈ O such that

∀x ∈ X |x |O < |b|O.

Proof. Let t be a reduction from O to WFN, that is t is recursive such that

x ∈ O ⇔ Rt(x) is well-founded.

The idea is that if X is unbounded in O, then we can characterize O by a Σ1
1

formula, contradicting Corollary 20.7. If the desired b does not exist, then, for
each x ∈ O, we can find a y ∈ X such that there exists an embedding of Rt(x)
into O below y. Using the proof of Theorem 20.2, we can formulate this as a
property P(x),

P(x) ⇔ ∃y [y ∈ X ∧ ∃γ∀z0, z1 (Rt(x)(z0, z1) ⇒ 〈γ(z0),γ(z1)〉 ∈Wg(z))],

where g is a recursive function so that Wg(z) = {〈x , y〉: x <O y <O z} (see
Proposition 19.7). If X is Σ1

1, then P is Σ1
1.

If x ∈ O, then Rt(x) is well-founded, hence by (∗), ρ(Rt(x)) ≤ | f (t(x))|O, and
thus if X is unbounded in O, P(x) holds. If P(x) holds on the other hand, then
Rt(x) must be well-founded (otherwise such a mapping would not exist), and
thus x ∈ O. Hence P would be a Σ1

1 characterization of O.
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Corollary 21.2: If X ⊆ N is ∆1
1, and h is recursive such that x ∈ X if and only if

h(x) ∈ O, then there exists a b ∈ O such that

∀x ∈ X |h(x)|< |b|O.

A similar statement holds with WFN in place of O.

Boundedness for sets of reals

The key to Spector’s theorem is the fact that WFN and O are m-complete for the
class of Π1

1 sets of natural numbers.

We have seen (Theorem 17.6) that the set WOrd,WF ⊆ NN are ΠΠΠ1
1-complete

with respect to Wadge-reducibility. This lets us obtain a similar result for Σ1
1 sets

of reals.

Theorem 21.3 (Σ1
1-boundedness for reals): Let A ⊆ WOrd be Σ1

1. Then there
exists a ξ < ωCK

1 such that

∀α ∈ A ‖α‖< ξ,

where ‖α‖ denotes the order type of the well-ordering coded by α.

An analogous statement holds for WF, with respect to the rank function ρ of a
well-founded relation.

Proof. If such a ξ did not exist, then

α ∈WOrd ⇔ ∃β [β ∈ A ∧ WOrdβ].

The right-hand side is Σ1
1, and hence WOrd would be Σ1

1, contradiction.

Rank analysis of co-analytic sets

The previous results constitute a powerful technique when analyzing the com-
plexity of sets. In particular, they give us a method to show that a Π1

1 set is not
Borel, besides proving that they are Π1

1-complete.

If A⊆ NN is Π1
1, then there exists a recursive tree T such that

α ∈ A ⇔ T (α) is well-founded.

21 – 2



Every well-founded T (α) has a rank ρ(T (α)). Σ1
1-boundedness tells us that if A

is moreover ∆1
1, then the spectrum of these ranks is bounded by a computable

ordinal. This means that we can show that A is not ∆1
1 by showing that its

ordinal spectrum {ρ(T (α)): α ∈ A} is unbounded in ωCK
1 .

These observations generalize (using relativization) to ΠΠΠ1
1 sets: Ranks of Borel

sets are bounded by an ordinal ξ < ω1.

The downside of this method is that the tree T associated with a Π1
1 set is a

rather generic object, stemming from the canonical representation of Π1
1 sets,

and it may be rather difficult to prove anything about the ordinals ρ(T (α)).

In many cases one can replace the canonical rank function with a “custom” one
that better reflects the structure of a set.

Given a set S, a rank on S is a map ϕ : S→ Ord. A rank is called regular if ϕ(S)
is an ordinal, i.e. ϕ(S) is an initial segment of Ord.

Each rank gives rise to a prewellordering ≤ϕ:

x ≤ϕ y ⇔ ϕ(x)≤ ϕ(y).

A prewellordering is a binary relation on S that is reflexive, transitive, and
connected (any two elements are comparable), and every non-empty subset of S
has a ≤ϕ-minimal element.

Under AC every set can be well-ordered, which means that every set admits a
regular rank function that is one-one. However, we would like a rank function
to reflect the complexity and structure of the set. In particular, we would like to
preserve the boundedness properties of Σ1

1 sets. For those to hold it was crucial
that the initial segments WOrdξ, ξ < ω1 (and similarly for O) are Borel.

We formulate a similar property that ensures the same for general rank functions.

Definition 21.4: Let X be a Polish space, and suppose A⊆ X . A rankϕ : A→ Ord
is a ΠΠΠ1

1-rank if there exists a ΣΣΣ1
1 relation ≤Σϕ and a ΠΠΠ1

1 relation ≤Πϕ such that for
y ∈ A,

{x ∈ A: ϕ(x)≤ ϕ(y)}= {x ∈ X : x ≤Σϕ y}

= {x ∈ X : x ≤Πϕ y}.

In other words, the initial segments ≤ϕ below a given y ∈ A are uniformly∆∆∆1
1.

Theorem 21.5: Every ΠΠΠ1
1 set A⊆ NN admits a ΠΠΠ1

1-rank.
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Proof. We first show that WOrd admits a ΠΠΠ1
1-rank. The function ϕ is obviously

ϕ(α) =‖α‖. We have to express ‖α‖≤‖β ‖ in a Σ1 and a ΠΠΠ1
1 way.

For the ΣΣΣ1
1 relation ≤Σϕ, let

α≤Σϕ β ⇔ Eα is a linear ordering and

∃γ [γ is a one-one, relation preserving mapping γ : Eα→ Eβ]

⇔ Eα is a linear ordering and ∃γ∀m, n [m Eα n ⇒ γ(m) Eβγ(n)].

Recall that “Eα is a linear ordering” is Π0
1, hence ≤Σϕ is Σ1

1.

For the ΣΣΣ1
1 relation ≤Πϕ, let

α≤Πϕ β ⇔ Eα is a well-ordering and

there is no relation preserving mapping of Eβ onto an initial segment of Eα
⇔ α ∈WOrd and ∀γ¬∃k∀m, n [m Eβ n ⇒ γ(m) Eαγ(n) Eαk].

Since WOrd is Π1
1, ≤Πϕ is Π1

1, too.

Now we have for β ∈WOrd,

α≤Σϕ β ⇔ α≤Πϕ β ⇔ ‖α‖≤‖β ‖,

as desired.

Theorem 21.6 (Boundedness for arbitrary rank functions): Suppose A ⊆ X is
ΠΠΠ1

1 but not Borel and ϕ : A→ Ord is a ΠΠΠ1
1-rank on A. If B ⊆ A is ΣΣΣ1

1, then there is
an x0 ∈ A such that

ϕ(x)≤ ϕ(x0) for all x ∈ B.

Proof. If not, then

x ∈ A ⇔ ∃y [y ∈ B ∧ x ≤Σϕ y],

and thus A would be ΣΣΣ1
1, and thus Borel, a contradiction.

Corollary 21.7: Suppose A⊆ X isΠΠΠ1
1 and ϕ : A→ Ord is a regularΠΠΠ1

1-rank. Then

(a) ϕ(A)≤ω1;

(b) A is Borel if ϕ(A)<ω1;

(c) if B ⊆ A is ΣΣΣ1
1, then sup{ϕ(x): x ∈ B}<ω1.
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The Cantor-Bendixson Rank

We illustrate the concept of ΠΠΠ1
1-ranks with a rank function that is different from

the canonical rank function.

Suppose T is a tree on {0, 1}. Define the Cantor-Bendixson derivative of T as

T ′ = {σ ∈ T : σ has at least two incompatible extensions}.

We can iterate this derivative along the ordinals:

T (ξ+1) = (T (ξ))′ and

T (λ) =
⋃

ξ<λ

T (ξ) for λ limit.

We clearly have T (ζ) ⊆ T (ξ) for ζ < ξ. There must exist an ordinal ξ0 such that
(T (ξ0))′ = T (ξ0). Since T is countable, ξ0 < ω1. We call the least such ξ0 the
Cantor-Bendixson rank of T , ‖T ‖CB.

The following is not hard to see.

Proposition 21.8: For any tree T ,

(a) if [T ‖T‖CB] 6= ;, then [T ‖T‖CB] is a perfect subset of NN;

(b) T ‖T‖CB = ; if and only if [T] is countable.

We hence have a new proof of the Cantor-Bendixson Theorem 2.5 for 2N.

One can show that ‖ .‖CB is indeed a ΠΠΠ1
1-rank on the set of all countable com-

pact subsets of 2N. This follows from the theory of Borel derivatives, which
generalizes the Cantor-Bendixson derivative to other settings (see (author?)
[Kec95]).

Since for any given ordinal ξ < ω1, we can find a tree T ⊆ 2<N with ‖T ‖CB= ξ,
it follows that the set

Kω(2
N) = {K ⊆ 2N : K countable}

is not Borel.

Using a different derivative, (author?) [KW86] showed that the set

Diff= { f ∈ C[0,1]: f differentiable on [0,1]}

is not Borel.
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Lecture 22: Hyperarithmetical Sets

Is there an effective counterpart to Souslin’s Theorem that Borel=∆∆∆1
1? Defin-

ability in second order arithmetic gives us the lightface classes Σ0
n and Π0

n for
finite n, but what would a “lightface” Σ0

ξ
set be?

Instead of definability, we can also describe the lightface classes using com-
putational properties. In Lecture 9 we saw that the Σ0

n and Π0
n sets of reals

correspond to the Borel sets of finite level with computable codes. We could try
to extend the notion of a code into the transfinite, by introducing a “limit” of
codes to deal with limit ordinals. A limit code should give us a method how to
effectively recover codes for the sets whose union (limit) we are taking. This is,
by no coincidence, reminiscent of the concept of an ordinal notation, where the
limit notation was essentially an index for the notations of the ordinals whose
limit we are taking.

The transfinite jump operation

We first illustrate the method for subsets of N. Here we have the advantage that
iterating definability corresponds directly to iterating the jump operator. So if
we can define a transfinite extension of the Turing jump, this should give us a
blueprint of how to define Σ0

ξ
,Π0
ξ

sets for infinite ordinals.

The H-sets

The template for a transfinite extension of the jump is given by

0(n+1) = (0(n))′

0(ω) = {〈n, m〉: m ∈ 0(n)},

that is, at limit stages we take effective unions of predecessors in the jump
hierarchy. The predecessors are increasing in complexity and “lead up” to O(ω).
The general definition could read therefore something like

0(ξ) = {〈n, m〉: n codes an ordinal ζ < ξ and m ∈ 0(ζ)}.

This clearly suggests to use ordinal notations.
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Definition 22.1: For all x ∈ O, we define the H-set Hx recursively as follows:

H1 = 0,

H2x = (Hx)
′,

H3·5x = {〈y, m〉: y <O 3 · 5x ∧ m ∈ H y}.

The rules obviously assign a strictly ascending sequence of Turing degrees with
every path of O, i.e. every subset of O that is linearly ordered by <O and is
closed downwards under <O. We will see later that notations of equal |.|O-rank
define H-sets of equal Turing degree.

We start by observing that higher instances of H-sets can compute their prede-
cessors (in a uniform way).

Proposition 22.2: If x , y ∈ O, and x ≤O y, then Hx ≤1 H y uniformly in x , y
(that is, an index for the reduction from Hx to H y can be found uniformly in x , y).

Proof. Let f be recursive such that for any X ⊆ N, X ≤1 X ′ via f . Consider two
cases:

|y|O = |x |O + n: We can simply take h= f n, the n-fold iterate of f .

|y|O ≥ |x |O +ω: Let z ∈ O, n ∈ N be such that |z|O is limit and |y|O = |z|O + n.
Then

m ∈ Hx ⇔ 〈x , m〉 ∈ Hz ⇔ f n(〈x , m〉) ∈ H y .

Note that f n is one-one, that both cases can be distinguished effectively in x , y ,
and that n can be found effectively in x , y .

Next we show that the jump of an H-set can compute the ordinal notations
below its rank. Given x ∈ O, let

Ox = {y ∈ O: |y|O < |x |O}.

Proposition 22.3: For each x ∈ O, Ox ≤ H2x , uniformly in x.

Proof. The proof is by effective transfinite recursion. One constructs a com-
putable function f such that if x ∈ O,

Ox = Φ
O2x

f (x).

We sketch how to do the induction step, and leave the fully formalized argument
(in the manner of Lecture 19) to the reader (see (author?) [Sac90]). We consider
the following cases, which can be distinguished effectively:
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x = 1: Then Ox = ;. In this case just let f (x) be an index c such that ΦX
c = ;

for any oracle X .

x = 2s, s = 2t : Then Ox = Os ∪ {2y : y ∈ Os}. By assumption, Os ≤T H2s = Hx .
It follows that Ox is recursive in Hx , too. An index for the reduction can
be found uniformly from an index of the reduction Os ≤T Hx .

x = 2s, s = 3 · 5e: In this case

Ox = Os ∪ {3 · 5e : ϕe total and ∀n ϕe(n)<O ϕe(n+ 1)}.

Let q be a recursive function such that Wq(x) = {〈y, z〉: y <O z <O x}. Let
X = {3·5e : ϕe total and ∀n 〈ϕe(n),ϕe(n+1)〉 ∈Wq(x)}. Then Ox = Os∪X .
Again by hypothesis, Os ≤T Hx . Furthermore, X ≤T 0′′ = H4, and thus by
Proposition 22.2, X ≤T Hx . The two reductions can be combined uniformly
into a single reduction Ox ≤T Hx ≤T H2x .

x = 3 · 5s: Then Ox = {y : ∃n y ∈ Oϕs(n)}. By induction hypothesis, Oϕs(n) ≤T
H2ϕs(n) , and by Proposition 22.2, H2ϕs(n) ≤T Hx uniformly in n, x . Hence
Ox is r.e. in Hx , and therefore recursive in H2x . Again, all reductions are
uniform. (This case is where we need the jump of Hx to compute Ox .)

If we want to compute the set of notations of the same rank as x , we need one
more jump.

Corollary 22.4: For any x ∈ O,

O=x = {y ∈ O: |y|O = |x |O} ≤T H22x ,

uniformly in x.

Proof. We have
O=x = O2x \Ox .

Apply the previous proposition.

We are now in a position to show that the Turing degree of an H-set is invariant
under passing to a notation of equal rank.

Theorem 22.5 (Spector): For any x , y ∈ O,

|x |O = |y|O ⇒ Hx ≡T H y ,

uniformly in x , y.
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Proof. The proof proceeds by effective transfinite recursion on the set

O= = {〈x , y〉: x , y ∈ O and |x |O = |y|O},

along the well-founded relation 〈s, t〉 ≺ 〈x , y〉 which holds if and only if |s|O <
|x |O. We sketch the recursion step for the construction of a reduction Hx ≤T H y
(the reduction H y ≤T Hx is obtained in a completely analogous fashion), an
consider the following cases:

〈x , y〉= 〈1,1〉: Choose an index c such that Φ;c = ;.

〈x , y〉 ∈ O=, 〈x , y〉= 〈2s, 2t〉: By induction hypothesis, Hs ≤T Ht , and thus, by
the monotonicity of the jump operator,

Hx = H2s = (Hs)
′ ≤T (Ht)

′ = H2t = H y ,

and the reduction can be found uniformly.

〈x , y〉 ∈ O=, 〈x , y〉= 〈3 · 5s, 3 · 5t〉: We want to decide whether 〈z, m〉 ∈ Hx ,
given an oracle for H y . For this, we have to decide whether z <O x and
m ∈ Hz .

By Proposition 19.7, the set of all z <O x is r.e. and hence can be decided
in 0′ = H2 ≤T H y . For each such z, we have to decide whether m ∈ Hz.
For this, enumerate all v <O y. Since |y|O = |x |O, we must eventually
find a v such that |v|O = |z|O. The latter fact can be tested recursively in
H22v , by Corollary 22.4. Since y is limit, H22v ≤T H y . Finally, by induction
hypothesis Hv computes Hz, and by Proposition 22.2, H y ≥T Hs. All
procedures described are uniform in x , y and an index for the uniform
reduction up to 〈x , y〉.

Hyperarithmetic = ∆1
1

A set X ⊆ N is called hyperarithmetic if it is recursive in some H-set. We will see
that the hyperarithmetic sets of natural numbers are precisely the ∆1

1 definable
sets, thereby giving an effective analog to Souslin’s Theorem.

We first show that if X is hyperarithmetic, then X is ∆1
1. We will actually show

something stronger: Uniformly in x ∈ O we can compute a ∆1
1-index for Hx .
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The normal form for Π1
1 sets discussed in Lecture 20 yields that for every Π1

1 set
X there exists an e ∈ N such that

x ∈ X ⇔ ∀α∃y [T (e, x , y,α |y) ∧ U(y) = 0].

In this case e is called a Π1
1-index for X . A ∆1

1-index for a ∆1
1 set Y is a number

d = 〈e0, e1〉 such that e0 is a Π1
1-index for Y and e1 is a Π1

1-index for N \ X (such
an e1 is also called a Σ1

1-index for X ).

Theorem 22.6 (Kleene): There exists a recursive function f such that if x ∈ O,
then f (x) is a ∆1

1-index for Hx .

Proof. The proof proceeds as usual by effective transfinite recursion along <O.
We skip the details and sketch how to do the recursion step.

x = 1: Let f (x) be a ∆1
1 index for the empty set.

x = 2s: By induction hypothesis, we can assume we have constructed a function
ϕc such that ϕc(s) is a ∆1

1-index of Hs. We have to show that effectively
in x , c we can find a ∆1

1-index for (Hs)′. Given any X ⊆ N, x ∈ X ′ if and
only if ΦX

x (x) ↓, if and only if

∃σ T (x , x , |σ|,σ) ∧ σ = X ||σ| .

We can use the ∆1
1-index for X to express the last part of the formula in

terms of a T -normal form of X and of N\X . We have to do this twice – for
the Σ1

1-index, and for the Π1
1-index. Bringing the whole expression into

T -normal form gives a Σ1
1 index and a Π1

1-index for X ′, respectively. (For
details see (author?) [Sac90].)

x = 3 · 5s: We have Hx = {〈y, m〉: y <O 3 · 5x ∧ m ∈ H y}. By induction
hypothesis, we have constructed a function ϕc such that

Hx = {〈y, m〉: y <O 3·5x ∧ ∀α∃m[T ((ϕc(x))0, x , m,α |m)∧U(m) = 0] }.

y <O 3 · 5s is uniformly r.e. in s. Normalizing yields a Π1
1-index for Hx . A

Σ1
1-index is obtained similarly.

Corollary 22.7: If X ⊆ N is hyperarithmetic, then it is ∆1
1.

Proof. The ∆1
1 sets are closed downward under Turing reducibility. (Exercise!)
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Finally, we show that being ∆1
1 implies being hyperarithmetic. This is an intrigu-

ing consequence of the boundedness principle.

Theorem 22.8 (Kleene): If X ⊆ N is ∆1
1, then X is hyperarithmetic.

Proof. If X is ∆1
1, then it is many-one reducible to O. Let g be recursive such

that
x ∈ X ⇔ g(x) ∈ O.

Now define Z ⊆ N by

z ∈ Z ⇔ ∃y [y ∈ X ∧ z = g(y)].

Z = g(X ) is a Σ1
1 subset of O, and by Spector’s Boundedness Theorem 21.1 there

exists b ∈ O such that
∀z ∈ Z |z|O < |b|O.

This means
x ∈ X ⇔ g(x) ∈ Ob.

By Proposition 22.3, Ob is recursive in H2b , and hence X is hyperarithmetic.

Let HYP be the set of hyperarithmetic sets of natural numbers.

Corollary 22.9: The set HYP is a Π1
1 subset of 2N.

Proof. We have

X ∈ HYP ⇔ ∃x [x ∈ O ∧ X ≤T Hx].

Since O is Π1
1, Hx has a (uniformly) ∆1

1 definition, and Turing reducibility can
be expressed via an arithmetical formula, the result follows.
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