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Abstract

An infinite binary sequence X is Kolmogorov-Loveland (or KL) random if there is no com-
putable non-monotonic betting strategy that succeeds on X in the sense of having an unbounded
gain in the limit while betting successively on bits of X . A sequence X is KL-stochastic if there
is no computable non-monotonic selection rule that selects from X an infinite, biased sequence.

One of the major open problems in the field of effective randomness is whether Martin-
Löf randomness is the same as KL-randomness. Our first main result states that KL-random
sequences are close to Martin-Löf random sequences in so far as every KL-random sequence
has arbitrarily dense subsequences that are Martin-Löf random. A key lemma in the proof of
this result is that for every effective split of a KL-random sequence at least one of the halves is
Martin-Löf random. However, this splitting property does not characterize KL-randomness; we
construct a sequence that is not even computably random such that every effective split yields
two subsequences that are 2-random. Furthermore, we show for any KL-random sequence A
that is computable in the halting problem that, first, for any effective split of A both halves are
Martin-Löf random and, second, for any computable, nondecreasing, and unbounded function g
and almost all n, the prefix of A of length n has prefix-free Kolmogorov complexity at least n −

g(n). Again, the latter property does not characterize KL-randomness, even when restricted
to left-r.e. sequences; we construct a left-r.e. sequence that has this property but is not KL-
stochastic, in fact, is not even Mises-Wald-Church stochastic.

Turning our attention to KL-stochasticity, we construct a non-empty 50
1 class of KL-

stochastic sequences that are not weakly 1-random; by the usual basis theorems we obtain
such sequences that in addition are left-r.e., are low, or are of hyperimmune-free degree.

Our second main result asserts that every KL-stochastic sequence has effective dimension 1,
or equivalently, a sequence cannot be KL-stochastic if it has infinitely many prefixes that can
be compressed by a factor of α < 1. This improves on a result by Muchnik, who has shown
that were they to exist, such compressible prefixes could not be found effectively.
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1 Introduction

The major criticism brought forward against the notion of Martin-Löf randomness
is that, while it captures almost all important probabilistic laws, it is not completely
intuitive, since it is not characterized by computable martingales but by recursively
enumerable ones (or by an equivalent r.e. test notion).

This point was issued first by Schnorr (26; 27), who asserted that Martin-Löf ran-
domness was too strong to be regarded as an effective notion of randomness. He pro-
posed two alternatives, one defined via coverings with measures which are computable
real numbers (not merely left-r.e.), leading to the concept today known as Schnorr
randomness (27). The other concept is based on the unpredictability paradigm; it de-
mands that no computable betting strategy should win against a random sequence.
This notion is commonly referred to as computable randomness (27).

If one is interested in obtaining stronger notions of randomness, closer to Martin-
Löf randomness, without abandoning Schnorr’s paradigm, one might stay with com-
putable betting strategies and think of more general ways those strategies could be
allowed to bet. One possibility is to remove the requirement that the betting strat-
egy must bet on a given sequence in an order that is monotonic on the prefixes of
that sequence, that is, the strategy itself determines which place of the sequence it
wants to bet against next. The resulting concept of non-monotonic betting strategies
is a generalization of the concept of monotonic betting strategies. An infinite binary
sequence against which no computable non-monotonic betting strategy succeeds is
called Kolmogorov-Loveland random, or KL-random, for short. The concept is named
after Kolmogorov (9) and Loveland (14), who studied non-monotonic selection rules
to define accordant stochasticity concepts, which we will describe later.

The concept of KL-randomness is robust in so far as it remains the same no matter
whether one defines it in terms of computable or partial computable non-monotonic
betting strategies (18); in terms of the latter, the concept has been introduced by Much-
nik, Semenov, and Uspensky (20) in 1998. They showed that Martin-Löf randomness
implies KL-randomness, but it is not known whether the two concepts are different.
This question was raised by Muchnik, Semenov, and Uspensky (20) and by Ambos-
Spies and Kučera (1). It is still a major open problem in the area. A proof that both
concepts are the same would give a striking argument against Schnorr’s criticism of
Martin-Löf randomness.

Most researchers conjecture that the notions are different. However, a result of
Muchnik (20) indicates that KL-randomness is rather close to Martin-Löf randomness.

Recall that it is possible to characterize Martin-Löf randomness as incompressibil-
ity with respect to prefix-free Kolmogorov complexity K: A sequence A is Martin-Löf
random if and only if there is a constant c such that for all n the prefix-free Kolmo-
gorov complexity of the length n prefix A �n of A is at least n − c. It follows that a
sequence A cannot be Martin-Löf random if there is a function h such that

K(A �h(c)) ≤ h(c) − c for every c. (1)

On the other hand, by the result of Muchnik (20) a sequence A cannot be KL-random
if (1) holds for a computable function h. So, the difference between Martin-Löf ran-
domness and KL-randomness appears, from this viewpoint, rather small. Not being
Martin-Löf random means that for any given constant bound there are infinitely many
initial segments for which the compressibility exceeds this bound. If, moreover, we
are able to detect such initial segments efficiently (by means of a computable func-
tion), then the sequence cannot even be KL-random.
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In this paper we continue the investigations by Muchnik, Semenov, and Uspen-
sky, and give additional evidence that KL-randomness is very close to Martin-Löf
randomness.

In Section 4 we refine a splitting technique that Muchnik used in order to obtain
the result mentioned above. We show the following: if A is KL-random and Z is a
computable, infinite and co-infinite set of natural numbers, either the bits of A whose
positions are in Z or the remaining bits form a Martin-Löf random sequence. In fact,
both do if A is 10

2. Moreover, in that case, for each computable, nondecreasing and
unbounded function g it holds that K(A �n) ≥ n − g(n) for all but finitely many n.

In Section 5 we construct counterexamples that show that two of the implications
mentioned in the preceding paragraph cannot be extended to equivalences, i.e. they
are not sufficient conditions for KL-randomness (let alone Martin-Löf randomness).
First, there is a sequence that is not computably random but all whose “parts” in the
sense above (i.e., which can be obtained through a computable splitting) are Martin-
Löf random. Second, there is a sequence A that is not even MWC-stochastic such that
for all g as above and almost all n, K(A �n) ≥ n − g(n); moreover, the sequence A
can be chosen to be left-r.e. if viewed as the binary expansion of a real.

In the last two sections we consider KL-stochasticity. A sequence is KL-stochastic
if there is no computable non-monotonic selection rule that selects from the given
sequence a sequence that is biased in the sense that the frequencies of 0’s and 1’s do
not converge to 1/2. First we describe a method for the construction of KL-stochastic
sequences, which yields KL-stochastic sequences that are not weakly 1-random with
additional properties such as being left-r.e., being low, or being of hyperimmume-free
degree. Next we consider effective dimension. Muchnik (20; 31) demonstrates, by
an argument similar to the proof that a sequence A cannot be KL-random if there is
a computable function that satisfies (1), that a sequence A cannot be KL-stochastic if
there is a computable, unbounded function h and a rational α < 1 such that

K(A �h(i)) ≤ αh(i) for every i, (2)

i.e., if we can effectively find arbitrarily long prefixes of A that can be compressed by
a factor of α. Theorem 31 below states that KL-stochastic sequences have effective
dimension 1. This is equivalent to the fact that in the second mentioned result of
Muchnik it is not necessary to require that the function h be computable, i.e., it suffices
to require the mere existence of arbitrarily long prefixes of A that can be compressed
by a factor of α.

In the remainder of the introduction we gather some notation that will be used
throughout the text. Unless explicitly stated otherwise, the term sequence refers to an
infinite binary sequence and a class is a set of sequences. A sequence S can be viewed
as mapping i 7→ S(i) from ω to {0, 1}, and accordingly we have S = S(0)S(1) . . ..
The term bit i of S refers to S(i), the (i + 1)st bit of the sequence S. Occasionally we
identify a sequence S with the subset {i : S(i) = 1} of the natural numbers ω.

The initial segment of length n, S �n , of a sequence S is the string of length n
corresponding to the first n bits of S. Given two binary strings v, w, v is called a
prefix of w, v v w for short, if there exists a string x such that v∧x = w. If v v w
and v 6= w, we will write v @ w. The same relation can be defined between strings
and infinite sequences in an obvious way.

The plain and the prefix-free Kolmogorov complexity of a word w are denoted
by C(w) and by K(w), respectively. For definitions and properties of Kolmogorov
complexity we refer to the book by Li and Vitányi (11).

3



Non-monotonic Betting Strategies

For a word u let [u] denote the class of all sequences that have u as a prefix, and
for a set of words U write [U ] for the union of the classes [u] over all u ∈ U .

We will often deal with generalized joins and splittings. Assume that Z is an
infinite and co-infinite set of natural numbers. The Z-join A0 ⊕Z A1 of sequences A0
and A1 is the result of merging the sequences using Z as a guide. Formally,

A0 ⊕Z A1(n) =

{
A0(|Z ∩ {0, . . . , n − 1}|) if Z(n) = 0,

A1(|Z ∩ {0, . . . , n − 1}|) if Z(n) = 1.

On the other hand, given a sequence A and a set Z ⊆ ω one can obtain a new sequence
(word) A �Z by picking the positions that are in Z . Let pZ denote the principal function
of Z , i.e. pZ (n) is the (n+1)st element of Z (where this is undefined if no such element
exists). Formally,

A �Z (n) = A(pZ (n)), where pZ (n) = µx[|Z ∩ {0, . . . , x}| ≥ n + 1].

If Z is infinite, A �Z will yield a new infinite sequence, otherwise we define A �Z to
be the word of length |Z | extracted from A via Z . Note that this notation is consis-
tent with the usual notation of initial segments in the sense that A �n= A �{0,...,n−1}.
Observe that A = A0 ⊕Z A1 if and only if A �Z= A1 and A �Z= A0.

For functions f, g, the notation f (n) ≤
+ g(n) means that there exists a constant

c such that for all n, f (n) ≤ g(n) + c.

2 Non-monotonic Betting Strategies

Intuitively speaking, a non-monotonic betting strategy defines a process that places
bets on bits of a given sequence X ∈ 2ω. More precisely, the betting strategy de-
termines a sequence of mutually distinct places n0, n1, . . . at which it bets a certain
portion of the current capital on the value of the respective bit of X being 0 or 1.
(Note that, by betting none of the capital, the betting strategy may always choose to
“inspect” the next bit only.) The place ni+1 and the bet which is to be placed depends
solely on the previously scanned bits X (n0) through X (ni ).

As a formal definition is somewhat tedious, we present it in a sequence of defini-
tions.

DEFINITION 1 A finite assignment (f.a.) is a sequence

x = (r0, a0) . . . (rn−1, an−1) ∈ (ω × {0, 1})∗

of pairs of natural numbers and bits. The set of all finite assignments is denoted by
FA.

Finite assignments can be thought of as specifying partial values of an infinite bi-
nary sequence X = X (0) X (1) X (2) . . . , in the sense that X (ri ) = ai for i < n. If this
is the case for some f.a. x , we write x @ X . Given an f.a. x = (r0, a0) . . . (rn−1, an−1),
the domain of x , dom(x) for short, is the set {r0, . . . , rn−1}; note that a f.a. induces a
partial function from ω to {0, 1} with domain dom(x).

When betting, the player will successively gain more and more information on the
sequence he bets against. Depending on his current knowledge of the sequence, he
will determine the next place to bet on. We call the function which does this a scan
rule.

4
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DEFINITION 2 A scan rule is a partial function s : FA → ω such that

(∀w ∈ FA) [s(w) 6∈ dom(w)]. (3)

Condition (3) ensures that no place is scanned (and bet on) twice. A non-monotonic
betting strategy consists of a scan rule and in addition endows each place selected with
a bet.

DEFINITION 3 A stake function is a partial function from FA to [0, 2]. A non-monotonic
betting strategy is a pair b = (s, q) which consists of a scan rule s and a stake func-
tion q .

Intuitively, given a f.a. x @ X , the strategy picks s(x) to be the next place to bet
on. If q(x) < 1 it bets that X (s(x)) = 1, if q(x) > 1, it bets that X (s(x)) = 0, and if
q(x) = 1, the strategy refrains from making a bet.

Note at this point that it is not really necessary to define a non-monotonic betting
strategy on finite assignments. It is sufficient to give a binary word w ∈ 2<ω repre-
senting the values a0, . . . , an−1 of an f.a. If the sequence was obtained by a scan rule
s, the places selected can be recovered completely from this information. Therefore, it
suffices to consider betting strategies b : 2<ω

→ ω×[0, 2] which satisfy condition (3)
for the scan rule that is induced by keeping track of the first component of the given
betting strategy.

2.1 Running a betting strategy on a sequence. We now describe the game that
takes place when a non-monotonic betting strategy is applied to an infinite binary
sequence. Formally, this induces a functional which maps sequences (or even assign-
ments) to assignments (finite or infinite). So, in the following, assume X is a sequence
and b = (s, q) is a non-monotonic betting strategy.

The most important partial function oX
b yields the f.a. obtained so far. This only

depends on the scan rule s, and, of course, the bits of the sequence X , and is defined
as follows: Let oX

b (0) = ε, and, if xn = oX
b (n) is defined, let

oX
b (n + 1) = xn

∧ (s(xn), X (s(xn))),

if s(xn) is defined, while oX
b (n + 1) is undefined otherwise.

Formally, the payoff described above is then given by a partial function cX
b where

cX
b (n + 1) =

{
q(oX

b (n)), if X (s(oX
b (n))) = 0,

2 − q(oX
b (n)), if X (s(oX

b (n))) = 1.

For given initial capital db(ε), the partial capital function d X
b is now easily de-

scribed:

d X
b (n) = db(ε)

n∏
i=1

cX
b (i). (4)

Finally, we can define the randomness notion induced by non-monotonic betting
strategies.

DEFINITION 4 (1) A non-monotonic betting strategy b succeeds on a sequence A if

lim sup
n→∞

d A
b (n) = ∞ .
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(2) A subclass C of 2ω is a KL-nullset if there is a partial computable non-monotonic
betting strategy that succeeds on all A ∈ C.

(3) A sequence A is KL-random if there is no computable non-monotonic betting
strategy that succeeds on A.

The concept of KL-randomness remains the same if one uses in its definition partial
computable instead of computable non-monotonic betting strategies (18).

2.2 Further notions of randomness. In a setting of monotonic betting strategies it
does matter whether randomness is defined with respect to computable or partial com-
putable betting strategies (18); accordingly a sequence is called computably random
and partial computably random if there is no computable or partial computable, re-
spectively, monotonic betting strategy that succeeds on the sequence. For monotonic
betting strategies, the f.a. obtained so far is always a prefix of the given sequence
and often we write for example db(X �n) instead of d X

b (n). For a monotonic betting
strategy b, the function db satisfies for all words w the following fairness condition

db(w) =
db(w0) + db(w1)

2
. (5)

A function d from words to reals such that (5) with d in place of db holds for all
words w will be called a martingale. A pair of a monotonic betting strategy and an
initial capital determines a martingale and, conversely, any martingale determines an
initial capital and a monotonic betting strategy. Accordingly, we will extend concepts
defined for betting strategies to the corresponding martingales and vice versa and oc-
casionally we will specify betting strategies by giving the corresponding martingale.

Furthermore, we consider Martin-Löf random sequences (15). Let W0, W1, . . . be
a standard enumeration of the recursively enumerable sets. Recall that a sequence (An : n ≥

1) of sets is called uniformly recursively enumerable if there is a computable func-
tion g such that for all n ≥ 1 we have An = Wg(n). Recall further that the Lebesgue
measure λ on Cantor space is obtained by determining the bits of a sequence by inde-
pendent tosses of a fair coin, i.e. it is equivalent to the (1/2, 1/2)-Bernoulli measure,
i.e., the uniform measure on Cantor space.

DEFINITION 5 A Martin-Löf test is a uniformly recursively enumerable sequence (An : n ∈

ω) of sets of words such that for every n,

λ ([An]) ≤
1

2n+1 . (6)

A sequence X is covered by a sequence (An : n ∈ ω) of sets of words if for every n
the class [An] contains X . A sequence is Martin-Löf random if it cannot be covered
by any Martin-Löf test.

A Martin-Löf test is called a Schnorr test if the measure on the left-hand side of (6) is
computable in n (in the usual sense that the measure can be approximated effectively
to any given precision strictly larger than 0); a sequence is called Schnorr-random if
it cannot be covered by a Schnorr test.

A non-monotonic selection rule is a pair (s, c) of a scan rule s and a partial func-
tion c : FA → {0, 1}. A selection rule is applied to a given sequence X in the same
way as a betting strategy, except that instead of specifying a bet on every next bit to
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be scanned, the function c simply determines whether the next bit should be selected
(c(x) = 1) or not (c(x) = 0). The sequence selected from X by (s, c) is then the
sequence of all bits that are selected, in the order of selection. A sequence X is called
stochastic with respect to a given class of admissible selection rules if no selection rule
in the class selects from X an infinite sequence that is biased in the sense that the fre-
quencies of 0’s and 1’s do not converge to 1/2. A sequence is Kolmogorov-Loveland
stochastic or KL-stochastic, for short, if the sequence is stochastic with respect to the
class of computable non-monotonic selection rules. Like for KL-randomness, it can
be shown that the notion of KL-stochasticity remains the same if we allow partial
computable non-monotonic selection rules (18). A sequence is Mises-Wald-Church
stochastic or MWC-stochastic, for short, if the sequence is stochastic with respect to
the class of partial computable monotonic selection rules.

3 Basic results on non-monotonic randomness

This section gives some basic results that illustrate how non-monotonic betting strate-
gies work.

Non-monotonic betting strategies exhibit a behavior quite different from other ran-
domness concepts when studying the combined capabilities of two or more strategies.
More precisely, the classes that can be covered by computable or partial computable
non-monotonic betting strategies are not closed under union; the latter can be seen by
considering the class of all r.e. sets.

PROPOSITION 1 No partial computable non-monotonic betting strategy can succeed
on all r.e. sets.

Proof. Let b = (s, q) be a partial computable non-monotonic betting strategy. We
show that there exists a r.e. set W such that b does not succeed on W . For this purpose,
we compute a sequence (xn) of finite assignments, xn = (r0, a0) . . . (rn−1, an−1).
Start with x0 = ε, and set rn+1 = s(xn) and

an+1 =

{
1, if q(xn) ≥ 1,

0, if q(xn) < 1.

Enumerate rn+1 into W if an+1 = 1. (If b(xn) is undefined at some stage, the enu-
meration process will get stuck here as well and the resulting set W will be finite.)
Obviously, W is defined in a way such that b does not win a single bet against it,
hence, in particular, does not succeed on W . �

The following proposition contrasts Proposition 1.

PROPOSITION 2 There exist computable non-monotonic betting strategies b0 and b1
such that for every r.e. set W , at least one of b0 and b1 will succeed on W .

Proof. Define b0 = (s0, q0) to be the following simple betting strategy which is
meant to be applied with initial capital 1. Let the stake function q0 be constant with
value 5/3, i.e., always exactly 2/3 of the current capital are bet on the next bit being
0. Let s0(ε) = 0 and for all xn 6= ε let s0(xn) = 1 + max dom xn , i.e, in particular, for
xn = (0, a0) . . . (n − 1, an−1) we have s0(xn) = n. Hence, b0 is a monotonic betting
strategy that always bets 2/3 of its current capital on the next bit being 0. An easy
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calculation shows that this betting strategy succeeds in particular on all sequences A
such that there are infinitely many prefixes of A where less than 1/4 of the bits in the
prefix are equal to 1.

To define b1, fix a partition I0, I1, . . . of the natural numbers into consecutive,
pairwise disjoint intervals Ik such that |Ik+1| ≥ 5|Ik | and for every natural number e
let

De =

⋃
j∈ω

I<e, j> ,

where < ., . > is the usual effective pairing function. By the discussion in the pre-
ceding paragraph, b0 succeeds on any set that has a finite intersection with any of the
sets De, hence it suffices to construct a non-monotonic betting strategy b1 = (s1, q1)
that succeeds on all sets We that have an infinite intersection with De. Fix an effec-
tive enumeration (e1, z1), (e2, z2), . . . without repetitions of all pairs (e, z) where z ∈

We ∩ De. Divide the capital function d X
b1

into infinitely many parts d X
e , where it will

always hold that the d X
e (n) sum up to d X

b1
(n). Start with d X

e (0) = 2−e−1, i.e., for
every number e reserve a share of 2−e−1 of the initial capital 1; then, given a f.a.
xn = (r0, a0) . . . (rn−1, an−1), let

s1(xn) = zn and q1(xn) = 1 −
d X

en
(n)

d X
b1

(n)
,

hence betting all the capital obtained by d X
en

so far on the outcome that the zn th position
in the infinite sequence revealed during the application of the strategy is 1. Then b1
succeeds on all sets We where We ∩ De is infinite because for any number in the latter
set the capital dWe

e is doubled. �

We can immediately deduce that KL-nullsets are not closed under finite union.

PROPOSITION 3 The KL-nullsets are not closed under finite union, that is, if there
are partial computable non-monotonic betting strategies b and b′ that succeed on
classes X ⊆ 2ω and Y ⊆ 2ω, respectively, then there is not necessarily a partial
computable non-monotonic betting strategy that succeeds on X ∪ Y .

Proposition 2 also is immediate from the proof of the first mentioned result by
Muchnik (20). This result goes beyond the fact that for any given computable, un-
bounded function h the sequences A that satisfy (1) cannot be KL-random. Indeed,
two partial computable non-monotonic betting strategies are given such that any such
sequence is covered by one of them. These non-monotonic betting strategies can be
transformed into equivalent total ones by an argument similar to the proof that the con-
cepts of KL-randomness with respect to partial and total computable non-monotonic
betting strategies are the same. But for any r.e. set W , the length n prefix of W can be
coded by at most log n bits, hence there is a function h as required that works for all
r.e. sets.

REMARK 4 Let b be a computable non-monotonic betting strategy that on every se-
quence scans all places of the sequence. Then there is a monotonic betting strategy
that succeeds on every sequence on which b succeeds.

For a proof, observe that by compactness of Cantor space there is a computable
function t such that for every sequence X and all n the betting strategy b, when applied
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to X , uses at most t (n) computation steps before scanning the bit X (n). The assertion
then is immediate by a result of Buhrman, van Melkebeek, Regan, Sivakumar and
Strauss (4), who show that for any non-monotonic betting strategy b where there is
such a computable function t , there is an equivalent computable monotonic betting
strategy that succeeds on all the sequences on which b succeeds.

PROPOSITION 5 The class of computably random sequences is closed under com-
putable permutations of the natural numbers.

Proof. Assume that there were a computably random sequence X that loses this
property after permuting its bits according to a computable permutation, i.e., there is
a computable monotonic betting strategy b that succeeds on the permuted sequence.
By composing the computable inverse of the given permutation with b we obtain a
computable non-monotonic betting strategy b′ that succeeds on X , where b′ scans
all places of every sequence. Hence by Remark 4 there is a computable monotonic
strategy that succeeds on X , thus contradicting our assumption on X . �

4 Splitting properties of KL-random sequences

Proposition 3 suggests that KL-nullsets behave very differently from Martin-Löf nullsets,
which are all covered by a universal Martin-Löf test (and hence are closed under fi-
nite unions). On the other hand, KL-random sequences exhibit some properties which
makes them appear quite “close” to Martin-Löf random sequences.

For the splitting property of KL-random sequences stated in Proposition 6 it is
essential that the considered martingales are non-monotonic; in Proposition 8 it is
shown that a corresponding assertion for computably random sequences is false.

PROPOSITION 6 Let Z be a computable, infinite and co-infinite set of natural num-
bers, and let A = A0 ⊕Z A1. Then A is KL-random if and only if

A0 is K L A1 -random and A1 is K L A0 -random. (7)

Proof. First assume that A is not KL-random and let b be a computable nonmono-
tonic betting strategy that succeeds on A. According to (4) the values of the gained
capital d A

b (n) are given by multiplying the factors cA
b (i), and when splitting each of

these products into two subproducts corresponding to the bets on places in Z and Z ,
respectively, then in case d A

b is unbounded at least one of these two subproducts must
be unbounded. So the bets of places in Z or in the complement of Z alone must result
in an unbounded gain. Accordingly there is a computable nonmonotonic betting strat-
egy that succeeds on A by scanning exactly the same bits in the same order as b, while
betting only on the bits in either the Z part or Z part of A, which implies that (7) is
false.

Next suppose that a non-monotonic betting strategy bA1 computable in A1 suc-
ceeds on A0. We devise a new computable non-monotonic betting strategy which
succeeds on A. Of course, the idea is as follows: Scan the Z -positions of A (corre-
sponding to A1) until we find an initial segment of A1 which allows to compute a new
value of bA1 . Consequently, bet on A0 according to bA1 .
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Formally, given an f.a. xn , split it into two sub-f.a. x0
n and x1

n , where (rk, ak) is a
part of x i

n if and only if Z(rk) = i . Now define

b(xn) =

{
bx1

n (x0
n) if bx1

n (x0
n) ↓ in |x1

n | steps,
(min dom x1

n ∩ Z , 1) otherwise.

This completes the proof. �

This rather simple observation stated in Proposition 6 has some interesting conse-
quences. One is that splitting a KL-random sequence by a computable set yields at
least one part that is Martin-Löf random.

THEOREM 7 Let Z be a computable, infinite and co-infinite set of natural numbers.
If the sequence A = A0 ⊕Z A1 is KL-random, then at least one of A0 and A1 is
Martin-Löf random.

Proof. Suppose neither A0 nor A1 is Martin-Löf random. Then there are Martin-
Löf tests (U 0

n : n ∈ ω) and (U 1
n : n ∈ ω) with U i

n = {ui
n,0, ui

n,1, . . . }, such that for
i = 0, 1,

Ai ∈

⋂
n∈ω

⋃
k∈ω

[ui
n,k].

Define functions f0, f1 by fi (n) = min{k ∈ ω : ui
n,k @ Ai }. Obviously the following

must hold:
(∃i) (

∞

∃m) [ fi (m) ≥ f1−i (m)].

We define a new Martin-Löf test (Vn) by

Vn =

⋃
m>n

fi (m)⋃
k=0

[u1−i
n,k ].

Then {Vn} is a Schnorr test relative to the oracle Ai (a SchnorrAi -test) and covers A1−i ,
so A1−i is not SchnorrAi -random. Since KL-randomness implies Schnorr-randomness
(for relativized versions, too), it follows that A1−i is not KLAi -random, contradicting
Theorem 6. �

We use the same method to give an example of a computably random sequence
where relative randomness of parts, in the sense of Proposition 6, fails. Here Z is the
set of even numbers, and we write A⊕ B instead of A⊕Z B. The same example works
for Schnorr randomness.

PROPOSITION 8 There is a computably random (and hence Schnorr random) se-
quence A = A0 ⊕ A1 such that for some i ∈ {0, 1}, Ai is not Schnorr random relative
to A1−i .

Proof. One can construct a computably random sequence A = A0 ⊕ A1 such that, for
each n, K(A �n) ≤

+ n/3 (10; 17). Then, for i = 0 and for i = 1, K(Ai �n) ≤
+ 2n/3,

hence by Schnorr’s characterization of Martin-Löf randomness (11), neither A0 nor
A1 are Martin-Löf random. Now the construction in the proof above shows that for
some i ∈ {0, 1}, Ai is not Schnorr random relative to A1−i . �
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Splitting properties of KL-random sequences

REMARK 9 Let Z be a computable, infinite and co-infinite set of natural numbers. If
the sequence A = A0 ⊕Z A1 is KL-random relative to some oracle X , then at least
one of A0 and A1 is Martin-Löf random relative to X .

For a proof it suffices to observe that the proof of Theorem 7 relativizes.

An interesting consequence of (the relativized form of) Theorem 7 is stated in
Theorem 11; in the proof of this theorem we will use Remark 10, due to van Lambal-
gen (32) (also see Downey et al. (7) for a proof).

REMARK 10 Let Z be a computable, infinite and co-infinite set of natural numbers.
The sequence A = A0 ⊕Z A1 is Martin-Löf random if and only if A0 is Martin-Löf
random and A1 is Martin-Löf random relative to A0. (Furthermore, this equivalence
remains true if we replace Martin-Löf randomness by Martin-Löf randomness relative
to some oracle.)

The closest one can presently come to van Lambalgen’s theorem for KL-randomness
is Proposition 6. Note the subtle difference: in the case of Martin-Löf randomness,
one merely needs A0 to be random, not random relative to A1.

DEFINITION 6 A set Z has density α if

lim
m→∞

|Z ∩ {0, . . . , m − 1}|

m
= α . (8)

THEOREM 11 Let R be a KL-random sequence and let α < 1 be a rational. Then
there is a computable set Z of density at least α such that R �Z is Martin-Löf random.

Proof. For a start, we fix some notation for successive splits of the natural numbers.
Let {Nw}w∈{0,1}∗ be a uniformly computable family of sets of natural numbers such
that for all w,

(i) Nε = ω , (i i) Nw = Nw0∪̇Nw1 , (i i i) Nw has density
1

2|w|
,

where ∪̇ denotes disjoint union. For example, we may define

Na0a1...am−1 = {a0 + a1 · 2 + . . . + am−1 · 2m−1
+ n · 2m : n ∈ ω} ,

which obviously satisfies (i), (ii) and (iii). By (iii), for any word w the complement Nw

of Nw has density 1 − 1/2|w|, thus it suffices to show that there are words w1 v w2 v

. . . such that for all i ,

(iv) |wi | = i and (v) Ri = R �Nwi
is Martin-Löf random .

The wi are defined inductively. For a start, observe that by Theorem 7 for r1 =

0 or for r1 = 1 the sequence R �Nr1
is Martin-Löf random; pick r1 such that the

latter is true and let w1 = 1 − r1. For i > 1, let wi be defined as follows. By
Proposition 6 the sequence R �Nwi−1

is KL-random relative to Ri−1, hence by (ii) and
by the relativized version of Theorem 7 stated in Remark 9, for ri = 0 or for ri = 1
the sequence R �Nwi−1ri

is Martin-Löf random relative to Ri−1; pick ri such the latter
is true and let wi = wi−1(1 − ri ).

11



Splitting properties of KL-random sequences

Now (iv) follows for all i by an easy induction argument. We already have that R1
is Martin-Löf random. Assuming that Ri is Martin-Löf random and using van Lam-
balgen’s result from Remark 10, we obtain that the sequence Ri+1 is Martin-Löf ran-
dom since ri+1 is chosen such that R �Nwi ri+1

is Martin-Löf random relative to Ri and
because for some appropriate computable set Z we have

Ri+1 = R �Nwi+1
= R �Nwi

⊕Z R �Nwi ri+1
.

This completes the proof. �

The functions fi in the proof of Theorem 7 can be viewed as a modulus for a cer-
tain type of approximation to the sequences under consideration. The technique of
comparing two given moduli can also be applied to other types of moduli, e.g., to a
modulus of convergence of an effectively approximable sequence. Recall that a func-
tion g majorizes a function m if g(n) ≥ m(n) for all n.

REMARK 12 Let A be a sequence in 10
2, i.e., A is the pointwise limit of uniformly

computable sequences A0, A1, . . ., and let

m(n) = min{s : s > n and As �n= A �n} .

Then A is computable relative to any function g that majorizes m.
For a sketch of proof, let T be the set of all words w such that for all prefixes u

of w there is some s where |u| ≤ s ≤ g(|u|) and u is a prefix of As . Then T is a
tree that is computable in g and the sequence A is an infinite path of T because g
majorizes m. Furthermore, A is the only infinite path on T because any word u that is
not a prefix of A has only finitely many extensions on T , hence A is computable in g.
For details of this standard argument see for example Odifreddi (21, I, V.5.3 d).

THEOREM 13 Let Z be a computable, infinite and co-infinite set of natural numbers
and let A = A0 ⊕Z A1 be KL-random where A1 is in 10

2. Then A0 is Martin-Löf
random.

Proof. We modify the proof of Theorem 7. For a proof by contradiction, assume
that A0 is not Martin-Löf random and define f0 as in the proof of Theorem 7. Let f1
be defined similar to the definition of the modulus m in Remark 12, i.e., f1(n) is the
least s > n such that some fixed effective approximation to A agrees after s steps
with A on the first n places. In case f0 majorized f1 at all but finitely many places,
the sequence A1 were computable in a finite variant of f0, hence in f0, and hence
in A0, contradicting the assumption that A is KL-random. Otherwise we argue as
before that A0 is not Schnorr-random relative to A1, again contradicting the assumed
KL-randomness of A. �

By applying Theorem 13 to the set Z and its complement, the following Corollary is
immediate.

COROLLARY 14 Let Z be a computable, infinite and co-infinite set of natural num-
bers and let A = A0 ⊕Z A1 be KL-random and 10

2. Then A0 and A1 are both
Martin-Löf random.

A function g is an order if g is computable, nondecreasing, and unbounded.

12



Counterexamples

COROLLARY 15 Suppose A is in 10
2 and is KL-random. Then for each order g and

almost all n, K(A �n) ≥ n − g(n).

Proof. Let Z be a computable co-infinite set that for all n contains at least n − g(n)/2
of the first n natural numbers. Let A0 and A1 be the sequences such that A = A0 ⊕Z
A1. Then

K(A1 �(n−g(n)/2)) ≤
+ K(A �n) ,

because the first n − g(n)/2 bits of A1 can be effectively recovered from the first n
bits of A. So if K(A �n) ≤ n − g(n) for infinitely many n, for each such n the prefix
of length n − g(n)/2 of A1 would be compressible, up to an additive constant, by
at least g(n)/2 bits, hence A1 would not be Martin-Löf random. Since A and hence
also A0 is in 10

2, this contradicts Theorem 13. �

5 Counterexamples

5.1 Splicing zeroes into �. A sequence X can be identified with the real that
has the binary expansion 0.X (0)X (1) . . .. A real is called left-r.e. if it the limit of a
nondecreasing computable sequence of rationals. First we give an example of a left-
r.e. real A which is not MWC-stochastic, but satisfies K(A �n) ≥

+ n − g(n) for each
order g and almost all n. Thus even for left-r.e. reals, the conclusion of Corollary 15
is not equivalent to KL-randomness.

The idea is to “splice” into � a very sparse 50
1 set of zeros. Recall that � is the

halting probability of some fixed universal prefix-free Turing machine and that the
real � is left-r.e. and (its binary expansion) is Martin-Löf random (6).

DEFINITION 7 For sequences X and S, let Splice(X, S) be equal to X ⊕S ∅ (where ∅

is the sequence consisting of zeroes only).

LEMMA 16 If X is left-r.e. and B is r.e. then Splice(X, B) is also left-r.e.

This is easy to verify for an r.e. set B, as n entering B means that in Splice(X, B) one
bit 0 is cancelled and certain bits shift to the left.

PROPOSITION 17 If the r.e. set B is co-infinite, then A = Splice(�, B) is not MWC-
stochastic.

Proof. We may assume pB(n) ≥ 2n for almost all n, else A violates the law of large
numbers. When n enters B, then a prefix code of n (of length ≤

+ 2 log n) enters the
domain of the universal machine. So, for some constant d, if � �2 log n+d has settled
by stage s, then Bs �n= B �n . Fix n0 such that 2 log n0 +d ≤ n0/2, and pick s0 so that
τ = A �n0 has settled by s0. Let m = n0 −|B ∩ {0, . . . , n0 − 1}|. Note that σ0 = ��m
has settled by s0.

We define a monotonic partial computable selection rule l which succeeds on A.
We also define a sequence σ0 @ σ1 @ . . . and a sequence of stages s0 ≤ s1 ≤ . . .
such that σi @ �si . The selection rule l behaves as follows on reals R extending
σ0. Suppose we have defined σi , si and so far have scanned ρ @ R, |ρ| = k. If
k 6∈ Bsi , then select k (note that, if R = A, then by the choice of n0, in fact k 6∈ B).
Otherwise, interpret the position k as a further bit of �. Thus, scan this bit h = R(k)
without selecting, and let σi+1 = σi h. Let si+1 be the first stage s ≥ si (if any)
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such that σi+1 @ �s . (If s is not found then L is undefined.) Note that l has the
desired effect on A; in particular, it selects an infinite sequence of positions on which
A is 0. �

PROPOSITION 18 Let R be Martin-Löf random, let B be dense simple, and let A =

Splice(R, B). Then for each order g and almost all n, we have that

K(A �n) ≥
+ n − g(n) .

Proof. As we may modify g, it suffices to show (∀n) K(A �n) ≥
+ n−g(n)−2 log g(n)

for each order g. Let h(u) = max{n : g(n) ≤ u}. Let S = B. Since B is dense simple,
pS(u) ≥ h(u) for almost all u. Hence there is n0 such that, for n ≥ n0, pS(g(n)) ≥ n.

Given n ≥ n0, let v = |S ∩ {0, . . . , n − 1}|. So v ≤ g(n). Given A �n and v, we
may enumerate B till v elements < n are left, and then recover R �n−v . Since R is
random and v ≤ g(n),

n − g(n) ≤ n − v ≤
+ K(R �n−v) ≤

+ K(A �n) + 2 log g(n).

This completes the proof. �

THEOREM 19 There is a left-r.e. sequence A that is not MWC-stochastic such that
for each order g and almost all n,

K(A �n) ≥
+ n − g(n) .

Proof. By the results of this section, it is immediate that it suffices to let A =

Splice(�, B) for some dense simple (and hence r.e.) set B. �

REMARK 20 Miller and Yu (19) have shown that A is Martin-Löf random iff (∀n) C(A �n
) ≥

+ n − K(n). A similar argument to the previous two proposition shows that this
bound is quite sharp. It is not hard to construct an r.e. co-infinite set B such that
|B ∩ {0, . . . , n − 1}| ≥ n − K (n). (This can be done, for example, by using a
standard movable markers construction from computability theory.) Now it can be
proved that if A = Splice(�, B), then A is a non-stochastic left-r.e. real such that
(∀n) C(A �n) ≥

+ n − 2K (n).

5.2 A non-random sequence all of whose parts are random. Our next example
shows that splitting properties like the one considered in Corollary 14 do not neces-
sarily imply Martin-Löf randomness. Recall from the introduction that pG(i) is the
(i + 1)st element of G and that A �G is defined by A �G (i) = A(pG(i)).

THEOREM 21 There is a sequence A which is not computably random such that for
each computable infinite and co-infinite set V , A �V is 2-random.

Proof. We build an r.e. equivalence relation on ω where the equivalence classes are
finite intervals. The idea underlying the construction of A is to make the last bit of each
such interval a parity bit, while A is 2-random on the other bits. The approximations
to the equivalence classes are not changed too often, and accordingly a computable
martingale can succeed on A by betting on all the places that are the maximum element
of some approximation of an equivalence class. Furthermore, during the construction
it is ensured that for any computable infinite and co-infinite set V , the complement
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of V meets almost every equivalence class, hence the sequence A �V is 2-random
because, intuitively speaking, the parity bits do not help a martingale that is left-
computable relative to ∅

′ when betting on A �V .
The equivalence class [x] of each place x will be a finite interval. Then, in order

to define A, fix any 2-random sequence Z and let

A �S= Z where S = {x : x 6= max[x]},

while for x that are maximum in the interval [x], let A(x) be equal to the parity bit of
the restriction of A to the remainder of the interval, i.e., for x not in S, let

A(x) = ux where ux =

{
0 if |A ∩ ([x] − {x})| is even;

1 otherwise.

During the construction, it will be ensured that each infinite r.e. set intersects almost all
equivalence classes and, furthermore, that with oracle access to the halting problem ∅

′,
a canonical index for [x] can be computed from x . The properties of the equivalence
relation stated so far already suffice to verify the condition on 2-randomness.

CLAIM 1 Let G be a set that is computable in ∅
′ and contains for each x the whole

interval [x] except for exactly one place. Then the sequence A �G is 2-random.

Proof. Schnorr’s characterization (27) of Martin-Löf randomness in terms of incom-
pressibility can be relativized to ∅

′, i.e., for any sequence R we have

R is 2-random ⇔ (∃c ∈ ω)(∀n ∈ ω)[K∅
′

(R �n) ≥ n − c],

where K∅
′

(.) denotes prefix-free Kolmogorov complexity relativized to the halting
problem. By this characterization it suffices to show that with respect to the latter type
of Kolmogorov complexity and up to an additive constant cG , the complexity of the
prefixes of A �G is as least as large as the complexity of the prefixes of the 2-random
sequence Z , i.e., we have for all n,

K∅
′

(Z �n) ≤
+ K∅

′

((A �G)�n). (9)

In order to demonstrate (9), we show that

K∅
′

(Z �n) ≤
+ K∅

′

(A �pS(n)) ≤
+ K∅

′

(A �pG (n)) ≤
+ K∅

′

((A �G)�n). (10)

Every equivalence class contains exactly one place that is not in S and exactly one
place that is not in G, hence the functions pS and pG differ at most by one and the mid-
dle inequality in (9) follows. Concerning the first inequality observe that by definition
of A, with access to the halting problem it is possible to compute Z �n from A � pS(n)
by simply cancelling all bits of the latter word that correspond to places not in S. Con-
cerning the last inequality, observe that with access to the halting problem one can
compute A �pG (n) from (A �G) �n because for any y, due to the parity bit A(max[y]),
the bit A(y) is determined by the restriction of A to [y]\{y}, hence for any place y not
in G, which is then the only place in [y] that is not in G, the bit A(y) is determined
by A �G �

CLAIM 2 For any computable infinite and co-infinite set V , the sequence A �V is
2-random.

15



Counterexamples

Proof. Given V as in the claim, let We = V . Then by construction, almost all
equivalence classes have a nonempty intersection with We. Let H contain the least
element of each such intersection plus the least elements of the finitely many equiva-
lence classes that do not intersect We and let G be the complement of H . The set H in-
tersects each equivalence class in exactly one place and is computable in ∅

′, hence by
Claim 1 the sequence A �G is 2-random. Recalling the characterization of Martin-Löf
randomness in terms of left-computable martingales, also A �V is 2-random because
if there were a ∅

′-left-computable martingale dV that succeeded on A �V , there would
be a ∅

′-left-computable martingale dG that succeeds on A �G by simply simulating
the bets of dV on all the bits of A �G that correspond to bits of A �V . Observe in this
connection that V is a subset of G up to finitely many places, hence for almost all the
bets of dV on A �V there are corresponding bets of dG on A �G . �

The equivalence classes [x] are constructed in stages s = 0, 1, . . ., where [x]s denotes
the approximation of [x] at the beginning of stage s. Let g(x) denote the number
of equivalence classes [y] where y ≤ x , and let gs(x) be defined likewise with [y]
replaced by [y]s . Note that g is a nondecreasing unbounded function and that the gs(x)
converge nonincreasingly to g(x).

In order to ensure that every infinite r.e. set intersects almost all equivalence
classes, the requirement

Pe : e < log(g(x)) − 1 ⇒ We ∩ [x] 6= ∅

is met for every e such that We is infinite. For all x , let [x]0 = {x}. During stage s ≥ 0,
the finite intervals [x]s+1 are defined as follows. Requirement Pe requires attention at
stage s via x if x ≤ s, x = min([x]s), and there is some e < log(gs(x)) − 1 where

[x]s ∩ We,s = ∅ and {x, x + 1, . . . , s} ∩ We,s 6= ∅.

If some Pe needs attention at stage s, take the least such e and choose the least x such
that Pe needs attention via x , and let

[y]s+1 =

{
{x, x + 1, . . . , s} in case y ∈ {x, x + 1, . . . , s},
[y]s otherwise.

Otherwise, in case no Pe requires attention, let [y]s+1 = [y]s for all y. By a standard
finite injury argument, which is left to the reader, all equivalence classes are finite
intervals and requirement Pe is met for all e such that We is infinite. Since the con-
struction is effective, a canonical index for [x] can be computed from x with oracle
access to the halting problem.

It remains to show that A is not computably random, i.e., that there is a computable
martingale d that succeeds on A. The martingale d exploits the redundancy given by
the parity bits A(max[x]), and the idea underlying the construction of d is to work
with a small number of candidates for the maximum place of the current equivalence
class, where d plays on these candidates a doubling strategy until the first win occurs.
In order to define the candidates, observe that for every x the maximum number z
in [x] enters this equivalence class during stage z, hence z is in the set

Dx = {y : y = max[x]y+1} .

It is instructive to observe that the set Dx contains exactly the y ≥ x such that y =

max[x]s for some s and that min Dx = x and max Dx = max[x].

16



Counterexamples

CLAIM 3 For any x, the set Dx has at most log(gx (x)) elements.

Proof. The maxima of the equivalence classes [x]s and [x]s+1 can only differ for
stages s ≥ x where the minimal pair (e, x ′) such that e requires attention via x satis-
fies x ′

≤ x . In this situation the index e satisfies

e < log(gs(x ′)) − 1 ≤ log(gs(x)) − 1 ≤ log(gx (x)) − 1

by definition of requiring attention and by the monotonicity properties of the func-
tions g and log. Furthermore, for all x ′

≤ x , the set We intersects [x ′]s and thus
intersects [x ′]s′ for all s′

≥ s, hence e will not require attention via some x ′
≤ x

at any later stage. In summary, the approximation to the maximum of [x] will be
changed at most log(gx (x)) − 1 times and Claim 3 follows. �

CLAIM 4 The sequence A is not computably random.

Proof. For given x , consider the monotonic martingale dx that bets only on places
in Dx , starting with a bet of stake qx = 1/gx (x) at place x , then doubling the stake
at each consecutive bet; the martingale stops betting after the first win occurred (or
if there are no more places in Dx left or the current capital is too small). For each
place y ∈ Dx , the strategy dx bets in favor of the assumption that the parity of the bits
in

[y]y+1 = [x] ∩ {x, . . . , y}

is 0, which corresponds to the assumption that y is indeed maximum in [x]. The
martingale dx doubles its initial stake qx at most |Dx | − 1 times, hence by Claim 3
at most | log(qx )| − 1 times, and consequently dx does not run out of capital in case
its initial capital is at least 1. When dx bets against the sequence A, at the latest
the bet on y = max[x] will be a win, hence by betting on the places in |Dx | the
martingale dx eventually wins, thereby realizing an overall win of qx according to the
doubling strategy.

Now let d be the martingale that bets successively according to martingales dx1 , dx2 , . . .
where x1 is 0 and in case the first win of dxi is on z, the starting location xi+1 of the
subsequent submartingale is set to z + 1. By the discussion in the preceding para-
graph, an easy inductive argument shows that when betting on the sequence A, all
submartingales dxi of d start with capital of at least 1 and increase this capital by their
initial stake qx .

It remains to show that the capital of d is unbounded when betting on A. Fix any
place z where z = min[z]. Then [y]z = [y] for all y < z, and accordingly we have

gz(z) = g(z) , hence qz =
1

g(z)
.

In particular, in case the minimum z of the kth equivalence class appears among the xi ,
the corresponding martingale dz will add an amount of qz = 1/k to the gain of d. As
a consequence, the gain of d on A will be at least 1 + 1/2 + 1/3 + . . ., i.e., d will
succeed on A, in case for all equivalence classes the minimum of the class is equal to
some xi . The latter holds because a straightforward inductive argument shows that for
every equivalence class [x] some dxi wins when betting on the last bit of [x] and that
accordingly xi+1 is set equal to the minimum of the subsequent equivalence class. �

This ends the proof of Theorem 21. �
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6 Kolmogorov-Loveland Stochasticity

There are two standard techniques for constructing KL-random sequences. The first
one is a probabilistic construction due to van Lambalgen (13; 18; 28; 32) and is based
on the observation that if one chooses a sequence at random according to a quasi-
uniform Bernoulli-distribution, i.e., determines the bits of the sequence by indepen-
dent flips of biased coins where the probabilities for 0 and 1 converge to 1/2, then
the sequence will be KL-random with probability 1. The second one is to construct
directly a Martin-Löf random sequence, e.g., by diagonalizing against a universal left-
computable martingale. In the proof of Theorem 23, we present another technique that
allows us to construct KL-stochastic sequences with certain additional properties that
could not be achieved by the standard methods mentioned above. For example, we ob-
tain a KL-stochastic sequence that is not weakly 1-random and left-r.e. whereas the
probabilistic construction of van Lambalgen cannot be used to obtain a KL-stochastic
sequence in the countable class of left-r.e. sequences, and by constructing a Martin-
Löf random sequence the sequence obtained will in particular be weakly 1-random.

The Bernoulli measure specified by a sequence (βi ) of rational numbers with 0 ≤

βi ≤ 1 is the distribution on Cantor space that is obtained by determining the bits of a
sequence according to independent tosses of biased coins where βi is the probability
that the outcome of toss i is 1. Such a Bernoulli measure is called computable if the
function i 7→ βi is computable, and is called quasi-uniform if limi βi = 1/2.

REMARK 22 If a sequence R is Martin-Löf random with respect to a quasi-uniform
Bernoulli measure, then R is KL-stochastic.

The assertion is immediate from results of Muchnik, Semenov, and Uspensky (20),
who introduce a notion of KL-stochasticity with respect to a given Bernoulli measure
and then show that, first, with respect to any Bernoulli measure Martin-Löf random-
ness implies KL-stochasticity and, second, KL-stochasticity with respect to any quasi-
uniform measure is the same as KL-stochasticity.

A sequence X is weakly 1-random (also called Kurtz-random) if X is contained in ev-
ery r.e. open class of uniform measure 1. Note that Schnorr randomness implies weak
1-randomness, but not conversely, as one can construct a weakly 1-random sequence
that does not satisfy the law of large numbers by a non-effective finite extension con-
struction where one alternates between appending long runs of 0’s and hitting the next
r.e. open class of uniform measure 1.

THEOREM 23 There is a non-empty 50
1 class P of KL-stochastic sequences such that

no X ∈ P is weakly 1-random.

Proof. We use some standard techniques for the construction of stochastic sequences (18;
20). We will define an appropriate quasi-uniform computable Bernoulli measure β.
Then, for a universal Martin-Löf test (Rn : n ∈ ω) with respect to β, we let P be
the complement of R1. Since β is computable, the set R1 is recursively enumerable,
hence P is a 50

1 class. Furthermore, every sequence in P is Martin-Löf random with
respect to β and hence is KL-stochastic according to Remark 22.

It remains to choose a quasi-uniform computable Bernoulli measure β such that
no X ∈ P is weakly 1-random. By elementary probability theory, given a rational
ε > 0 and k ∈ N, one can compute m = m(k, ε) such that in m independent tosses of a
0/1 “coin” with bias toward 1 of at least ε, with probability at least 1−2−k the majority
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of the outcomes reflect the bias—in other words, there are more 1’s than 0’s (18,
Remark 8). (It turns out that m(k, ε) = d6kε−2

e is sufficient.) Now let εr = 1/r
and partition the natural numbers into consecutive intervals I0, I1, . . . where Ir has
length m(r, εr ). For all i ∈ Ir , let βi = 1/2 + εr and let β be the Bernoulli measure
determined by the βi . By construction, for the closed-open class

Dr = {Z : Z has at least as many 0’s as 1’s on positions in Ir } ,

we have β[Dr ] ≤ 2−r and thus the classes D̂n =
⋃

r≥n Dr form a Martin-Löf test
with respect to β. The sequences in P are Martin-Löf random with respect to β,
hence any sequence in P is not contained in some class D̂n . But each class D̂n is
an r.e. open set of uniform measure 1 and consequently no sequence in P is weakly
1-random. Observe that the Lebesgue measure of D̂n is 1 because the complement of
each class Dr has uniform measure of at most 1/2 and since the Dr are stochastically
independent. �

In Theorem 23, it can be arranged for any given ε > 0 that the class P satisfies in
addition β[P] ≥ 1 − ε; here it suffices to replace in the proof the first component of
a universal Martin-Löf test with respect to β by a component that has measure less
than ε.

By the usual basis theorems (21), the following corollary is immediate from The-
orem 23.

COROLLARY 24 There is a left-c.e., not weakly 1-random, KL-stochastic sequence.
There is a low, not weakly 1-random, KL-stochastic sequence. There is a not weakly
1-random, KL-stochastic sequence that is of hyperimmune-free degree.

7 The dimension of KL-stochastic sequences

There exists an interesting connection between the asymptotic complexity of sequences
and Hausdorff dimension. Hausdorff dimension can be seen as a generalization of
Lebesgue measure, in the sense that it allows us to distinguish the size of Lebesgue
nullsets. It is defined via Hausdorff measures, and similar to Lebesgue measure, one
can define effective versions of them. This leads to the concept of effective dimension,
first introduced by Lutz (12).

DEFINITION 8 Let 0 ≤ s ≤ 1 be a rational number. A class C ⊆ 2ω has effective
s-dimensional Hausdorff measure 0 if there is a sequence {Cn}n∈ω of uniformly r.e.
sets of words such that for every n ∈ ω,

C ⊆ [Cn] and
∑

w∈Cn

2−s|w|
≤ 2−n . (11)

Note that for a sequence A to have effective 1-dimensional Hausdorff measure zero (as
a singleton class) is equivalent to it not being Martin-Löf random. So being a effective
s-dimensional Hausdorff null sequence for smaller s means being “less” random. The
effective Hausdorff dimension captures this “degree” of randomness.

DEFINITION 9 The effective (Hausdorff) dimension of a class C ⊆ 2ω is defined as

dim1(C) = inf{s ≥ 0 : C has effective s-dimensional Hausdorff measure 0.}.
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The effective dimension of a sequence is the effective dimension of the corresponding
singleton class.

It turns out that, just as Martin-Löf randomness corresponds to incompressibility
with respect to prefix-free Kolmogorov complexity, effective dimension corresponds
to linear lower bounds on compressibility.

THEOREM 25 For any sequence A it holds that

dim1 A = lim inf
n→∞

K(A �n)

n
. (12)

Theorem 25 was proven in the presented form by Mayordomo (16), but much of
it was already implicit in earlier works by Ryabko (24; 25), Staiger (29; 30), and Cai
and Hartmanis (5). Note that, since plain Kolmogorov complexity C and prefix-free
complexity K behave asymptotically equal, or, more precisely, since for every string
w it holds that

C(w) ≤ K(w) ≤ C(w) + 2 log |w| ,

one could replace K by C in Theorem 25. For more on effective dimension see also
Reimann (22).

Muchnik (20) refuted a conjecture by Kolmogorov — who asserted that there
exists a KL-stochastic sequence A such that K(A �n) = O(log n) — by showing that,
if A is KL-stochastic, then lim supn→∞ K(A �n)/n = 1. In the following, we are
going to strengthen this result by showing that dim1 A = 1 for any KL-stochastic
sequence A.

Ryabko (23) observed that van Lambalgen’s probabilistic argument for the con-
struction of KL-stochastic sequences yields with probability 1 a sequence that has
effective dimension 1. It is also not hard to see that also the construction in Theo-
rem 23 creates sequences of dimension 1. Theorem 31, which is the main result of
this section, states that in fact any KL-stochastic sequence has effective dimension 1.

Reimann (22) has posed the question whether each sequence of effective dimen-
sion 1 computes a Martin-Löf random. By our result, one could try to find a counterex-
ample using KL-stochasticity. However, the construction in Theorem 23 will not do
it: by a result of Levin (33), the Turing degree of any sequence which is Martin-Löf
random relative to some computable measure contains in fact a Martin-Löf random
sequence relative to the uniform measure.

The proof of Theorem 31 bears some similarities to the proof of Theorem 11,
where it has been shown that any KL-random sequence has arbitrarily dense sub-
sequences that are Martin-Löf random. The proof of the latter theorem worked by
successively splitting the given sequence into subsequences, where then the join of
all the Martin-Löf random subsequences obtained this way was again Martin-Löf ran-
dom. The proof used Theorem 7 and a result of van Lambalgen stated in Remark 10;
in the proof of Theorem 31, the latter two results are replaced by Lemmas 28 and 30,
respectively. The proof of Lemma 28, in turn uses Proposition 26 and Remark 27.
Proposition 26 is a slightly generalized version of a corresponding result by Muchnik
et al. (20).

PROPOSITION 26 For any rational α < 1 there is a natural number kα and a ratio-
nal εα > 0 such that the following holds. Given an index for a computable monotonic
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martingale d with initial capital 1, we can effectively find indices for computable
monotonic selection rules s1, . . . , s2kα such that for all words w which satisfy

d(w) ≥ 2(1−α)|w| (13)

there is an index i such that the selection rule si selects from w a finite sequence of
length at least εα|w| such that the ratio of 0’s and the ratio of 1’s in this finite sequence
differ by at least εα .

Proof. In a nutshell, the proof works as follows. First we use an observation due to
Schnorr (3; 27) in order to transform the monotonic martingale d into a monotonic
martingale d ′ where the fraction of the current capital that is bet is always in a fixed
finite set of weights, while we have d ′(w) ≥ 2

1
2 (1−α)|w| for all w that satisfy (13);

furthermore, an averaging argument shows that for some rational β > 0 and and for
all such w, for one of these finitely many weights the bets with this weight alone
yield a gain of size 2β|w|. Finally, we argue along the lines of Ambos-Spies et al. (2)
that if a monotonic martingale wins that much on a word w while being restricted to a
single weight, then the martingale must bet on a nonzero constant fraction of all places
of w, the correct predictions must outnumber the incorrect ones by a constant nonzero
fraction of all predictions, and consequently these martingales can be converted into
selection rules si as required.

Let d ′ be the variant of d where for some appropriate rational δ > 0, the fraction γ
of the capital d would have bet is rounded down to the next multiple of δ less than or
equal to γ , i.e., for any bet of d where d bets a fraction γ of its current capital in the
half-open interval [iδ, (i + 1)δ), the new martingale bets a fraction of iδ of its current
capital.

In case a bet of d is lost, the new martingale d ′ loses at most as much as d, while
in case the bet is won, the new martingale increases its capital by a factor of 1 + iδ
compared to an increase by a factor of at most 1 + (i + 1)δ for d ′. We have that

1 + iδ
1 + (i + 1)δ

= 1 −
δ

1 + (i + 1)δ
≥ 1 −

δ

1 + δ
=

1
1 + δ

. (14)

Let δ = 1/kα where kα is chosen so large that

δ ≤ 2(1−α)/2
− 1 , hence

1
1 + δ

≥
1

2(1−α)/2 .

With this choice of δ we have for all words w that satisfy (13) that

d ′(w) ≥

(
1

1 + δ

)|w|

d(w) ≥

(
1

2(1−α)/2

)|w|

2(1−α)|w|
= 2

(1−α)
2 |w| , (15)

where the two inequalities hold by the discussion preceding (14) and by choice of δ
and by (13), respectively.

Now fix any word w that satisfies (13) and hence satisfies (15). Consider the bets
of d ′ on w, i.e., consider the first |w| bets of d ′ while betting against any sequence that
has w as a prefix. For r ∈ {0, 1}, let ni,r be the number of such bets where a fraction
of iδ of the current capital is bet on the next bit being equal to r ; similarly, let n+

i,r
and n−

i,r be the number of bets of the latter type that are won and lost, respectively,
i.e., ni,r is the sum of n+

i,r and n−

i,r . Then we have

d ′(w) = d ′(ε)
∏

r∈{0,1}

∏
i=0,...,kα−1

[(1 + iδ)n+

i,r (1 − iδ)n−

i,r ] , (16)
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where d ′(ε) is 1. Then for some r ∈ {0, 1} and some i ≤ kα − 1 we have

d ′(w)−2kα ≤ [(1 + iδ)n+

i,r (1 − iδ)n−

i,r ] ≤ (1 + iδ)n+

i,r −n−

i,r ≤ 2n+

i,r −n−

i,r . (17)

The first inequality in (17) follows because one of the factors of the product on the
right-hand side of (16) must be at least as large as the geometric mean d ′(w)−2kα of
this product. The second inequality holds because of (1 + iδ)(1 − iδ) < 1, while the
latter, together with (17) and the assumption d ′(w) > 1, implies n+

i,r > n−

i,r , from
which the third inequality in (17) is immediate. Putting together (15) and (17) and
taking logarithms yields

εα|w| ≤ n+

i,r − n−

i,r where εα =
(1 − α)

2
1

2kα
=

(1 − α)

4kα
> 0 . (18)

For j = 0, . . . , kα − 1, let s2 j+1 and s2 j+2 be the computable monotonic selection
rules that on input w selects the next bit if and only if d ′ on input w bets a fraction
of jδ of its current capital on the next bit being equal to 0 and 1, respectively. Observe
that an index for s j can be computed from α and an index for d. By construction,
selection rule s2i+r+1 selects from w a sequence of length ni,r where n+

i,r of these bits
are equal to r and the remaining n−

i,r bits are equal to 1 − r . So by (18), the selected
sequence has length at least εα|w| and the ratios of 0’s and of 1’s differ by at least εα .
Since w was chosen as an arbitrary word that satisfies (13), this finishes the proof of
Proposition 26. �

Remark 27 shows our intended application of Proposition 26

DEFINITION 10 Let α be a rational. A word w is called α-compressible if K(w) ≤

α|w|.

REMARK 27 Given a rational α < 1 and a finite set D of α-compressible words, we
can effectively find an index for a computable monotonic martingale d with initial
capital 1 such that for all w ∈ D we have d(w) ≥ 2(1−α)|w|.

For a proof, let dw be the monotonic martingale that starts with initial capital 2−α|w|

and plays a doubling strategy along w, i.e., always bets all its capital on the next bit
being the same as the corresponding bit of w; then we have in particular dw(w) =

2(1−α)|w|.
Let d be the sum of the martingales dw over all words w ∈ D, i.e., betting ac-

cording to d amounts to playing in parallel all martingales dw where w ∈ D. Obvi-
ously d(v) ≥ dw(v) for all words v and all w ∈ D, so it remains to show that the
initial capital of d does not exceed 1. The latter follows because every w ∈ D is
α-compressible, i.e., can be coded by a prefix-free code of length at most α|w|, hence
the sum of 2−α|w| over all w ∈ D is at most 1.

LEMMA 28 Let Z be a computable, infinite and co-infinite set of natural numbers
and let A = A1 ⊕Z A2 be KL-stochastic. Then one of the sequences A1 and A2 has
effective dimension 1.

Proof. For a proof by contradiction, assume that the consequence of the lemma is
false, i.e., that there is some rational number α0 < 1 such that A1 and A2 both have
effective dimension of at most α0. Pick rational numbers α1 and α such that α0 <
α1 < α < 1. By the characterization of effective dimension in terms of the prefix-free
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variant K of Kolmogorov complexity according to Theorem 25, for r = 1, 2 there are
arbitrarily large prefixes w of Ar that are α1-compressible, i.e., K(w) ≤ α1|w|. We
argue next that for any m there are arbitrarily large intervals I with min I = m such
that the restriction of Ar to I is α-compressible.

Let w0, w1, . . . be an effective enumeration of all α-compressible words w. For
the scope of this proof, say a word w is a subword of X at m if

w = X (m)X (m + 1) . . . X (m + |w| − 1) .

Let εα be the constant from Proposition 26.

CLAIM 1 For r = 1, 2, the function gr defined by

gr (m) = min{i : wi is a subword of Ar at m and |wi | >
2
ε2
α

m}

is total.

Proof. There are infinitely many α1-compressible prefixes of Ar . Given any such
prefix v of length at least m, let u and w be the words such that v = uw and |u| = m.
Then we have

K(w) ≤
+ K(v) + 2 log m ≤ α1|v| + 2 log m = α|w|

(
α1

α

|v|

|w|
+

2 log m
α|w|

)
,

where the expression in brackets goes to α1/α < 1 when the length of w goes to
infinity. As a consequence, we have K(w) ≤ α|w| for all such words w that are long
enough, hence by assumption on A for any m and t there is a word wi and an index i
as required in the definition of gr (m). �

Let m0 = 0 and for all t > 0, let

mt+1 = mt + max{|wi | : i ≤ max{g1(mt ), g2(mt )}} .

In the following, we assume that there are infinitely many t where

g1(mt ) ≤ g2(mt ) ; (19)

we omit the essentially identical considerations for the symmetric case where there
are infinitely many t such that g1(mt ) ≥ g2(mt ). Let

Dt = {w0, w1, . . . , wg2(mt )}

CLAIM 2 There are infinitely many t such that some word in Dt is a subword of A1
at mt .

Proof. By definition of g1(mt ), the word wg1(mt ) is a subword of A1 at mt , where this
word is in Dt for each of the infinitely many t such that g1(mt ) is less than or equal
to g2(mt ). �
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CLAIM 3 Given Dt and mt , we can compute an index for a monotonic computable
selection rules s(t) that scans only bits of the form

A1(mt ), A1(mt + 1), . . . , A1(mt+1 − 1)

of A such that for infinitely many t the selection rule s(t) selects from these bits a
finite sequence of length at least 2mt/εα where the ratios of 0’s and of 1’s in this finite
sequence differ by at least εα .

Proof. By Proposition 26 and Remark 27, from the set Dt we can compute indices for
monotonic computable selection rules s1, . . . , s2kα such that for each w ∈ Dt there is
an index i such that the selection rule si selects from w a finite sequence of length at
least εα|w| such that the ratio of 0’s and 1’s in this finite sequence differ by at least εα .
Any word w ∈ Dt has length of at least 2mt/ε

2
α , hence the selected finite sequence has

length of at least 2mt/εα . Furthermore, by Claim 2, there are infinitely many t such
that some w ∈ Dt is a subword of A1 at mt , and among the corresponding indices i
some index i0 between 1 and 2kα must appear infinitely often. So it suffices to let for
any t the selection rule s(t) be equal to the i0th selection rule from the list of selection
rules computed from Dt . �

Now we construct an non-monotonic computable selection rule s that witnesses that A
is not KL-stochastic. The selection rule s works in stages t = 0, 1, . . . and scans
during stage t the bits of A that correspond to bits of the form

A1(y) and A2(y) where mt ≤ y < mt+1 .

At the beginning of stage t , the value of g2(mt ) and the set Dt is computed as follows.
Successively for i = 0, 1, . . . , check whether wi is a subword of A2 at mt by scanning
all the bits

A2(mt ), . . . , A2(mt + |wi | − 1)

of A that have not been scanned so far, until eventually the index i equal to g2(mt )
is found, i.e., until we find some minimum i such that wi is a subword of A2 at mt .
Observe that by definition of mt+1, the index i is found while scanning only bits
of the form A2(y) where y < mt+1. Next the selection rule s scans and selects
the bits A1(mt ), A1(mt + 1), . . . according to the selection rule si0 as in Claim 3;
recall that this selection rule can be computed from Dt . Finally, stage t is concluded
by computing mt+1 from g1(t) and g2(t), where g1(t) is obtained like g2(t), i.e.,
in particular, the computation of mt+1 only requires to scan bits of the form Ar (y)
where y < mt+1.

By Claim 2 there are infinitely many t such that some w ∈ Dt is a subword of A1
at mt . By choice of s(t) and definition of s, for each such t the selection rule s selects
during stage t a finite sequence of length at least 2mt/εα where the ratios of 0’s and 1’s
in this finite sequence differ by at least εα . Consequently, the at most mt bits of A that
might have been selected by s before stage t are at most a fraction of εα/2 of the
bits selected during stage t , hence with respect to all the bits selected up to stage t
the ratios of 0’s and 1’s differ by at least εα/2. This contradicts the fact that A is
KL-stochastic, hence our assumption that A1 and A2 both have effective dimension
strictly less than 1 is wrong. �

Lemma 28 can be relativized to any oracle Z by essentially the same proof, we leave
the necessary minor adjustments to the reader.
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LEMMA 29 Let Z be a computable, infinite and co-infinite set of natural numbers,
let X be any sequence, and let A = A1 ⊕Z A2 be KL-stochastic relative to the ora-
cle X. Then one of the sequences A1 and A2 has effective dimension 1 relative to the
oracle X.

LEMMA 30 Let Z be a computable, infinite and co-infinite subset of the natural num-
bers with density δ. Then it holds for any sequences U and V that

dim1 U ⊕Z V ≥ (1 − δ) dim1 U + δ dimU
1 V . (20)

Proof. For any n, let wn be the prefix of U ⊕Z V of length n and let un and vn
be the prefixes of U and V of length |Z ∩ {0, . . . , n − 1}| and |Z ∩ {0, . . . , n − 1}|,
respectively; i.e., intuitively speaking, the word wn is the Z -join of un and vn . Fix
any ε > 0. Then for almost all n, by definition of density we have that

|un| ≥ (1 − δ − ε)n and |vn| ≥ (δ − ε)n , (21)

and by the characterization of effective dimension of a sequence X as the limit inferior
of K(X �n)/n, we have that

K(un) ≥ |un|(dim1 U − ε) and KU (vn) ≥ |vn|(dimU
1 (V ) − ε) . (22)

Furthermore, we have for all n

K(wn) ≥ K(un) + K(vn|un, K(un)) ≥ K(un) + KU (vn) − 4 log n , (23)

where the first inequality holds by a property of K-complexity related to symmetry of
information (11) and the second inequality holds because with oracle U the prefix un
of U can be recovered from its length, hence vn has a prefix-free code that consists of
a code witnessing the size of K(vn|un, K(un)) plus codes for n and K(un). Using (21)
and (22) for substituting in (23) and dividing by n yields

K(wn)

n
≥ (1 − δ) dim1 U + δ dimU

1 V +
g(ε) − 4 log n

n
, (24)

for some function g such that for all ε ≤ 1 the value of g(ε) is bounded by a constant
that does not depend on ε. The lemma follows since ε > 0 has been chosen arbitrarily
and because the effective dimension of U ⊕Z V is equal to the limit inferior of the
left-hand side of (24). �

THEOREM 31 If R is KL-stochastic, then dim1 R = 1.

Proof. The proof is rather similar to the proof of Theorem 11, in particular, we use
the notation Nw from there. It suffices to show that there are words w1 v w2 v . . .
such that for all i , we have |wi | = i and

dim1 Ri = 1 , where Ri = R �Nwi
;

the theorem then follows by Lemma 30 and because for any word w, the set Nw has
density 1 − 1/2|w|.

The wi are defined inductively. For a start, observe that by Lemma 28 for r1 = 0
or for r1 = 1 the sequence R �Nr1

has effective dimension 1; pick r1 such that the latter
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is true and let w1 = 1 − r1. For i > 1, let wi be defined as follows. By an argument
similar to the proof of Proposition 6, the sequence R �Nw is KL-stochastic relative
to Ri−1, hence by the relativized version of Lemma 28, for ri = 0 or for ri = 1 the
sequence R �Nwri

has effective dimension 1 relative to Rw; pick ri such the latter is
true and let wi = w(1 − ri ).

It remains to show by induction on i that all the sequences Ri have effective di-
mension 1. For i = 1, this is true by construction, while the induction step follows
according to the choice of the wi and due to Lemma 30 by an argument similar to the
corresponding part of the proof of Theorem 11; details are left to the reader. �
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369–376. Reprinted as (9).

[9] KOLMOGOROV, A. N. On tables of random numbers. Theoret. Comput. Sci.
207, 2 (1998), 387–395. Reprint of (8).

26



[10] LATHROP, J. I., AND LUTZ, J. H. Recursive Computational Depth. Inf. Comput.
153(1), 139–172, 1999.

[11] LI, M., AND VITÁNYI, P. An introduction to Kolmogorov complexity and its
applications, second ed. Graduate Texts in Computer Science. Springer, New
York, 1997.

[12] LUTZ, J. H. Gales and the constructive dimension of individual sequences.
In Automata, languages and programming, ICALP 2000 (Geneva, Switzerland,
2000), p. 902–913, Lecture Notes in Comput. Sci., 1853, Springer, Berlin, 2000.

[13] LUTZ, J. H., AND SCHWEIZER, D. L. Feasible reductions to Kolmogorov-
Loveland stochastic sequences. Theor. Comput. Sci. 225, 185–194, 1999.

[14] LOVELAND, D. A new interpretation of the von Mises’ concept of random
sequence. Z. Math. Logik Grundlagen Math. 12 (1966), 279–294.
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