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ABSTRACT. It is well known that Martin-Löf randomness can be characterized by a num-
ber of equivalent test concepts, based either on effective nullsets (Martin-Löf and Solovay
tests) or on prefix-free Kolmogorov complexity (lower and upper entropy). These equiv-
alences are not preserved as regards the partial randomness notions induced by effective
Hausdorff measures or partial incompressibility. Tadaki [21] and Calude, Staiger and Ter-
wijn [2] studied several concepts of partial randomness, but for some of them the exact
relations remained unclear. In this paper we will show that they form a proper hierarchy of
randomness notions, namely for any ρ of the form ρ(x) = 2−|x |s with s being a rational
number satisfying 0 < s < 1, the Martin-Löf ρ-tests are strictly weaker than Solovay
ρ-tests which in turn are strictly weaker than strong Martin-Löf ρ-tests. These results also
hold for a more general class of ρ introduced as unbounded premeasures.

1. INTRODUCTION

The correspondence between effective nullsets in the sense of measure theoretic tests and
compressible initial segments in terms of (prefix-free) Kolmogorov complexity is one
of the cornerstones of algorithmic information theory. Furthermore, the concept of ran-
domness itself appears thereby very robust, as several variants of measure theoretic tests
(Martin-Löf and Solovay tests) and complexity theoretic properties all yield the same no-
tion of randomness; that is, a sequence A is Martin-Löf random iff one of the following
equivalent conditions hold:

(1) A is not covered by any Martin-Löf test;
(2) A is not covered by any Solovay test;
(3) for some constant c and for all n, K (A �n) ≥ n − c;
(4) limn K (A �n) − n = ∞.

On the other hand, the complexity theoretic formulations suggests not only a qualitative,
but also a quantitative classification of randomness. For instance, a sequence A for which
K (A �n) ≥ n/2 + c for all n and some constant c might be classified as being 1/2-random.

This idea is, in particular, reflected in the study of relative randomness initiated by
Solovay [18] and later leading to a variety of reducibility notions for random sequences.
The forthcoming book by Downey and Hirschfeldt [5] will provide for a detailed account.

One may ask whether it is possible to catch “partial” randomness not only within a
rather fine-grained hierarchy of relative randomness, but as an absolute notion in terms of
measure theoretic tests and their complexity theoretic counterparts.

The problem here is that the property of being an (effective) nullset is rather qualitative.
What is therefore needed is a further ramification of the effective Lebesgue nullsets (which
constitute the non-random sequences).

Such a ramification can be given in terms of Hausdorff measures, which are an essential
tool in fractal geometry. In particular, they allow for a definition of a non-integral notion
of dimension, Hausdorff dimension. Works by Ryabko [15, 16], Staiger [20] and Cai and
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Hartmanis [1] established a close connection between Hausdorff dimension and the (lower)
asymptotic complexity of sequences given as lim infn K (A �n)/n.

Later, Lutz [7] used the martingale characterization of nullsets to define an effective
variant of Hausdorff measure and dimension. This yields a quantitative classification of
randomness for individual sequences in terms of measure.

It is straightforward to transform the martingale approach to Hausdorff measures into
a Martin-Löf-style test concept (as done by Reimann and Stephan [12], Tadaki [21] or
Calude, Staiger and Terwijn [2]). Besides, one may also define partial randomness notions
based on the other randomness criteria (2)-(4). It could be shown that in the generalized
framework Martin-Löf tests still coincide with the complexity criterion derived from (3),
referred to as weak Chaitin randomness by Tadaki [21] and Calude, Staiger and Terwijn
[2]. Furthermore, Solovay tests and strong Chaitin randomness (4) still remain equivalent
[2, 21].

However, it remained unclear whether the full robustness of (Lebesgue) randomness (in
the sense of complete equivalence of all test notions) prevailed.

In this paper we show that this is indeed not the case. Not only with respect to the
usual Hausdorff measures, but also a very wide family of measures given by unbounded
premeasures, Martin-Löf tests and Solovay tests are not equivalent. Another test notion
proposed by Calude, Staiger and Terwijn [2] called strong Martin-Löf randomness yields
an even stronger notion of randomness.

The paper is structured as follows. In Section 2 we give a detailed introduction of effec-
tive tests derived from a general class of outer measures on Cantor space. Section 3 will
treat the connection between tests and Kolmogorov complexity. Finally, in Section 4 we
will show that the test notions introduced in Section 2 form a proper hierarchy of random-
ness notions for unbounded premeasures. The latter include the non-integral Hausdorff
measures.

Notation: Most notation is standard. {0, 1}
? denotes the set of finite binary strings, {0, 1}

ω

the set of all infinite binary strings. @ is the partial prefix order on strings, which extends
to {0, 1}

?
∪ {0, 1}

ω in a natural way. x v y holds if either x @ y or x = y. Given a set
V ⊆ {0, 1}

? and a string x , we write Vx for the set {w ∈ V : x v w} and V +
x for the set

{w ∈ V : x @ w}.
We assume the reader is acquainted with the basic definitions and results of Recursion

Theory and the theory of Kolmogorov complexity. We refer to the textbooks of Li and
Vitányi [6], Odifreddi [13] and Soare [19] for any background on this.

2. EFFECTIVE RANDOMNESS TESTS FOR OUTER MEASURES

There are mainly two ways to devise measures on Cantor space (as on any other suitable
topological/metric space). One can start with an additive set function on a (semi)algebra
of sets (usually comprising a basis of the topology) and then use Caratheodory’s extension
theorem, which ensures that there is a unique extension of this set function to a σ -algebra
(which includes the Borel sets if the starting (semi)algebra included the basic open sets).

Alternatively, measures can be obtained by restricting outer measures to a suitable fam-
ily of sets in {0, 1}

ω. Outer measures are often defined via premeasures and coverings.
A premeasure is a non-negative (possibly infinite) set function ρ on a family C. In most
cases, C will consist of the family of basic open cylinders which are defined as

[x] = {X ∈ {0, 1}
ω : x @ X}
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Therefore, it is convenient to regard premeasures as functions

ρ : {0, 1}
?

→ R+

0

from which one can obtain an outer measure µρ by letting

µρ(X ) = inf

{∑
i

ρ(xi ) :
⋃

i

[xi ] ⊇ X
}

.

It is not hard to show that µ = µρ is a countably subadditive, monotone set function. If
one restricts µ to those sets A which satisfy

(∀Y) [µ(Y) = µ(Y ∩A) + µ(Y \A)],

called the measurable sets, the measurable sets form a σ -algebra and µ is an additive set
function on this σ -algebra.

If the underlying space is a metric space, the method of passing from a premeasure to
an outer measure can be refined in a geometrical way. The standard metric d on {0, 1}

ω

(which yields a topology compatible with the one generated by the cylinder sets defined
above) is defined as

d(X, Y ) = inf{2−n : (∀m < n)[X (m) = Y (m)]}.

That is, if X 6= Y then d(X, Y ) = 2−n for the least n with X (n) 6= Y (n). The diameter
of a set X ⊆ {0, 1}

ω is d(X ) = sup{d(X, Y ) : X, Y ∈ X }. If ρ is a premeasure, we can
define

µδ(X ) = inf

{∑
i

ρ(xi ) :
⋃

i

[xi ] ⊇ X ∧ (∀i)[d([xi ]) ≤ δ]

}
and

µρ(X ) = sup{µδ(X ) : δ > 0}.

Here it is the “fine covers” that determine the value of µρ . It can be shown that µρ is
also an outer measure and that it behaves, in geometric sense, more stable than measures
constructed via the first method. Note that d([xi ]) ≤ δ if and only if |x | ≥ − log δ.

An extensive treatment of constructing measures via premeasures is found in the book
by Rogers [14].

It can be shown that every nullset, a set for which µρ takes the value zero, is measurable.
It was Martin-Löf’s groundbreaking idea to use the concept of an effective nullset to define
a notion of randomness for individual sequences. Basically, a sequence is random with
respect to a measure if it is not contained in an effectively presented nullset with respect to
the measure. As the nullsets are precisely the sets which have outer measure zero, it suffices
to study effective nullsets with respect to premeasures. It is not hard to see that Martin-
Löf’s approach works for arbitrary (outer) measures which are derived from computable
premeasures.

A well-known group of outer measures is obtained from the premeasures ρ(x) = 2−|x |s

where 0 ≤ s ≤ 1, the s-dimensional Hausdorff measures. For s = 1, we obtain the uniform
distribution ρ(x) = 2−|x |, which generates a measure isomorphic to Lebesgue measure on
the unit interval.

We will study a certain class of premeasures. These premeasures can be thought of as
“geometrically well behaved”. Among the measures they induce are the usual probability
measures on {0, 1}

ω as well as the family of s-dimensional Hausdorff measures. To be able
to effectivize, we will always assume premeasures to be computable.
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Definition 1. A (geometrical) premeasure is a computable function ρ : {0, 1}
?

→ R+

0
such that ρ(ε) = 1 and there are (computable) real numbers p, q with

• 1/2 ≤ p < 1 and 1 ≤ q < 2;
• (∀x ∈ {0, 1}

?) (∀i ∈ {0, 1}) [ρ(xi) ≤ pρ(x)];
• (∀x ∈ {0, 1}

?) [qρ(x) ≤ ρ(x0) + ρ(x1)].
We will call such ρ a (p, q)-premeasure. ρ is called an unbounded premeasure if it is
(p, q)-premeasure for some q > 1. A premeasure is called length-invariant if

(∀x, y) [|x | = |y| ⇒ ρ(x) = ρ(y)]

and is called additive if

(∀x ∈ {0, 1}
?) [ρ(x) = ρ(x0) + ρ(x1)].

Remarks and Examples: (a) Additive premeasures induce non-atomic probability mea-
sure on {0, 1}

ω. Among the probability measures induced by additive premeasures are
standard uniform distribution ρ(x) = 2−|x |, which we will denote by λ, as well as all
non-degenerate Bernoulli measures µp with 0 < p < 1. µp is the measure obtained by
setting

ρ(x) = p|{i :x(i)=0}|(1 − p)|{i :x(i)=1}|

for all x .
(b) It is not hard to see that, if ρ is unbounded, the corresponding measure µ constructed

by the second method mentioned above will be infinite (µ({0, 1}
ω) = ∞). This motivates

the term “unbounded” (see Proposition 2.4).
(c) The most common unbounded and length invariant premeasures are the functions

of the form ρ(x) = 2−|x |s with 0 < s ≤ 1. The corresponding constants are p = 2−s

and q = 21−s . These premeasures give rise to the s-dimensional Hausdorff measures. In
general, length-invariant premeasures are often called dimension functions, as the induce a
generalized type of Hausdorff measure.

(d) Other less orthodox examples of premeasures are ρ(x) = p(|x |)2−s|x |, where p is
a suitable polynomial, or ρ(x) = 2−p|{i :x(i)=0}|−(1−p)|{i :x(i)=1}|, where p is a real number
satisfying 0 < p < 1.

In the following, if we consider measures derived from premeasures, we will always as-
sume they are constructed via the second method. We will be particularly interested in
nullsets, that is, sets for which µρ takes the value zero. The following proposition states
some equivalent characterization of nullsets for a measure µρ . These will be important for
the definition of effective nullsets later on. It will be convenient to introduce some further
notation: Given W ⊆ {0, 1}

?, let ρ(W ) stand for
∑

x∈W ρ(x).

Proposition 1. Given a premeasure ρ and a set X ⊆ {0, 1}
ω, the following are equivalent:

(a) µρ(X ) = 0;
(b) For every n ∈ N there exists a set Un ⊆ {0, 1}

? such that

X ⊆ [Un] and ρ(Un) ≤ 2−n
;

(c) There exists a set W ⊆ {0, 1}
? such that ρ(W ) < ∞ and for any X ∈ X there are

infinitely many w ∈ W such that w @ X.

Proof. By definition, µρ(X ) is the infimum of all numbers ρ(W ) with X ⊆ [W ]. This
gives the equivalence of (a) and (b). Furthermore, taking W to be the union of all Un gives
the direction from (b) to (c).
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For the missing direction from (c) to (b), let w0, w1, . . . be an one-one enumeration of
W . Now one defines Un = {wm, wm+1, . . .} for the first m such that

∑
k≥m ρ(wk) < 2−n .

This m exists as
∑

k≥0 ρ(wk) is finite. As for every X ∈ X there are infinitely many k with
wk @ X , it holds that X ∈ [Un] for all n. This completes the direction from (c) to (b). �

We now introduce the effective variants of measure zero sets and the corresponding ran-
domness concepts. This generalizes earlier work. The underlying tests are defined as below
but were mostly restricted to ρ(x) = 2−|x | (or some additive premeasure, i.e. probability
measures on {0, 1}

ω). Martin-Löf [9] introduced the notion of effective tests now named
after him. Solovay [18] showed that X ∈ {0, 1}

ω is Martin-Löf random iff there is no r.e.
set W of strings such that ρ(W ) < ∞ and w @ X for infinitely many w ∈ W . Schnorr [17]
contrasted Martin-Löfs general condition to more restrictive randomness-tests where X is
random iff there is no uniformly enumerable sequence (Un)n∈N of sets with X ∈ [Un]
and ρ(Un) = 2−n for all n. This condition had also many natural characterizations and is
now known as Schnorr randomness. Based on this work, Lutz [7] initiated the study ef-
fectivizations of Hausdorff measures via modified martingales. Building on these notions,
further investigations were carried out by Tadaki [21], Reimann [11], Calude, Staiger and
Terwijn [2].

Definition 2. Let ρ : {0, 1}
?

→ R+

0 be a geometrical premeasure.
(a) A Martin-Löf ρ-test is a uniformly enumerable sequence (Un)n∈N of sets of strings

such that
(∀n)[ρ(Un) ≤ 2−n].

The test (Un)n∈N covers a set X ⊆ {0, 1}
ω if

X ⊆

⋂
n∈N

[Un].

In this case X is called Martin-Löf ρ-null. A sequence A ∈ {0, 1}
ω is called

Martin-Löf ρ-random if {A} is not covered by any Martin-Löf ρ-test.
(b) A strong Martin-Löf ρ-test is a uniformly enumerable sequence (Un)n∈N such that

(∀n)(∀V ⊆ Un)[V prefix-free ⇒ ρ(V ) ≤ 2−n].

Again, the test (Un)n∈N covers X ⊆ {0, 1}
ω if

X ⊆

⋂
n∈N

[Un].

Accordingly, a X is called strongly Martin-Löf ρ-null and A is called strongly
Martin-Löf ρ-random if {A} is not covered by any strong Martin-Löf ρ-test.

(c) A Solovay ρ-test is a recursively enumerable set W such that

ρ(W ) < ∞.

The test W covers X ⊆ {0, 1}
ω if, for any X ∈ X , W contains infinitely many

prefixes of X . A ∈ {0, 1}
ω is called Solovay ρ-random if it is not covered by any

Solovay ρ-test.

Note that the name “strong Martin-Löf test” might be misleading at first, since every
Martin-Löf test is also a strong Martin-Löf test. In fact, the use of “strong” makes more
sense from the viewpoint of random sequences since every strongly Martin-Löf ρ-random
sequence is also Martin-Löf ρ-random.

Also note that for additive premeasures, the notions of Martin-Löf ρ-randomness, Solo-
vay ρ-randomness and strong Martin-Löf ρ-randomness coincide, yielding an effective
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analog of Proposition 2.2. If ρ is additive, any Solovay ρ-test W can be converted effec-
tively into a Martin-Löf ρ-test (Vn) by letting x enter Vn if and only if 2n proper prefixes of
x have been enumerated into W prior to x . Furthermore, we can pass from a strong Martin-
Löf ρ-test (Un) to an ordinary Martin-Löf ρ-test (Vn) covering the same set of sequences
by the following effective procedure:

If x is enumerated into Un at some stage, check whether a prefix of x has already been
enumerated into Vn . If so, discard x . Otherwise check whether some extensions of x have
already been enumerated into Vn . If not, enumerate x into Vn . Otherwise assume W is the
finite set of strings extending x and already in Vn . Enumerate into Vn a finite, prefix-free
set W̃ such that [W̃ ] ∩ [W ] = ∅ and [W̃ ] ∪ [W ] = [x].

The so constructed Vn covers the same set of sequences as a (maximal, with respect to
covering) prefix-free subset V of Un . If ρ is additive, ρ(Vn) = ρ(V ) ≤ 2−n .

It is not clear how these procedures may be transferred to unbounded premeasures, since
a string may not be substituted by a cover-equivalent set of longer strings of the same
ρ-measure. In fact, we will show later that this is in general not possible.

We conclude this section by showing that unbounded, length-invariant premeasures in-
duce measures that are incompatible with the uniform distribution λ.

Proposition 2. For every unbounded premeasure ρ there exists a set X such that some
Martin-Löf λ-test covers all sequences X ∈ X but X does not have µρ-measure zero.

Proof. Assume ρ is an unbounded (p, q)-premeasure. Let Rn(x) = {xy : y ∈ {0, 1}
n
}. It

follows from an easy induction that,

(1) ρ(Rn(x)) ≥ qnρ(x) and (∀w ∈ Rn(x)) [ρ(w) ≤ pnρ(x)].

Let U0 = {ε}. Given Un , we can use (1) and the fact that ρ is computable to (effectively)
find prefix-free sets V 0

n , V 1
n such that [V i

n ] ⊂ [Un], [V 0
n ] ∩ [V 1

n ] = ∅ and ρ(V i
n ) ≥ 1. But

obviously, for some i we must have λ([V i
n ]) ≤

1
2λ([Un]). Pick such i and let Un+1 = V i

n .
Then, for U =

⋂
[Un], by choice of the sets U0, U1, . . ., the test (Un)n∈N is a Martin-

Löf λ-test and covers U but µρ(U) 6= 0. �

As a corollary we get that the (weak) randomness notions with respect to λ on the one hand
and with respect to unbounded measure functions on the other hand differ.

Corollary 1. For every unbounded premeasure ρ there exists a sequence X such that X is
Martin-Löf ρ-random but not Martin-Löf λ-random.

Proof. Any set of non-zero µρ-measure has to contain a Martin-Löf ρ-random sequence,
so the set U constructed above has to contain one, but cannot contain a Martin-Löf λ-
random sequence, for it is covered by some Martin-Löf λ-test. �

3. NULLSETS AND KOLMOGOROV COMPLEXITY

In this section we will study to what extent the correspondence between effective nullsets
and compressibility extends from the well-known characterization of randomness with re-
spect to the uniform distribution to nullsets with respect to (length-invariant) premeasures.

For this purpose, we generalize a definition by Chaitin [3] to arbitrary premeasures. For
the case ρ(x) = 2−|x |s , this was first done by Tadaki [21].

Definition 3. Let ρ be a premeasure.
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(a) A sequence A ∈ {0, 1}
ω is weakly Chaitin ρ-random if there exists a constant c

such that
(∀n) [K (A �n) ≥ − log ρ(A �n) − c].

(b) A set A ∈ {0, 1}
ω is strongly Chaitin ρ-random1 if

(∀c)(
∞

∀n)[K (A �n) ≥ − log ρ(A �n) + c].

The well-known Kolmogorov characterization for random sequences using prefix-free com-
plexity K generalizes to a characterization for Martin-Löf ρ-nullsets. For one direction,
though, it seems one has to presuppose length-invariance.

In the case ρ(x) = 2−|x |s , the following two propositions were shown by Tadaki [21].
Reimann [11] obtained related results for the more general case of computable dimension
functions.

Proposition 3. Let ρ be a premeasure. If A ∈ {0, 1}
ω is weakly Chaitin ρ-random then it

is also Martin-Löf ρ-random.

Proof. Assume A is not Martin-Löf ρ-random. Thus there exists a computable sequence
C1, C2, C3, . . . of enumerable sets of strings such that for all n

(2) (∃w ∈ Cn) [w @ A] and ρ(Cn) ≤ 2−n .

Define functions mn : {0, 1}
?

→ Q by

mn(w) =

{
nρ(w) if w ∈ Cn,

0 otherwise,

and let

m(w) =

∞∑
n=1

mn(w).

Obviously, all mn and thus m are enumerable from below. Furthermore,∑
w∈{0,1}?

m(w) =

∑
w∈{0,1}?

∞∑
n=1

mn(w) =

∞∑
n=1

n
∑

w∈Cn

ρ(w) ≤

∞∑
n=1

n
2n < ∞.

It follows from the fundamental Coding Theorem, due to Levin (see the book by Li and
Vitányi [6]), that there exists a constant cm such that m(w) ≤ cm2−K (w) for almost every
w. Now let c > 0 be any constant. If we set k = dce + 1, then, by (2), there is some
w ∈ Ck with w @ A, say w = A �n . This implies m(A �n) ≥ kρ(A �n) > cρ(A �n) and
therefore lim sup m(A �n)/ρ(A �n) = ∞. Hence A is not weakly Chaitin ρ-random. �

For length-invariant premeasures, we can prove the converse of Proposition 3.2.

Proposition 4. Let ρ be a length-invariant premeasure. If A ∈ {0, 1}
ω is Martin-Löf

ρ-random, then it is weakly Chaitin ρ-random.

Proof. The proof is an adaptation of a standard proof that every Marti-Löf random se-
quence is incompressible with respect to prefix-free Kolmogorov complexity (see for in-
stance the book by Downey and Hirschfeldt [5]). It is based on a fundamental result by
Chaitin [4] which establishes that for any l,

(3) |{x ∈ {0, 1}
n : K (x) ≤ n + K (n) − l}| ≤ 2n+c−l ,

1The notion of strong Chaitin ρ-randomness should not be confused with strong Chaitin randomness as
defined in [5], meaning (∃∞n)[K (A�n) ≥ n + K (n) −O(1)].
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where c is a constant independent of n, l. Remember that the natural numbers are identified
with their binary representation.

Let ρ be a length-invariant premeasure and assume A is not weakly Chaitin ρ-random.
As ρ is length-invariant, there exists a computable function h : N → R+

0 such that

h(n) = α ⇔ (∀x)[|x | = n ⇒ ρ(x) = α].

Now choose a c for which (3) holds. Define

Vn = {x ∈ {0, 1}
? : K (x) ≤ − log h(x) − n − c}.

Then each Vn covers A, since for every l there is some prefix x of A such that K (x) ≤

− log ρ(x) − l. Furthermore, each Vn is r.e., since K is enumerable from above. Finally,
using (3), we have for each n,∑

w∈Vn

ρ(w) =

∞∑
k=0

∑
w∈Vn
|w|=k

ρ(w) =

∞∑
k=0

h(k)|{0, 1}
k
∩ Vn|

≤ 2−n
∞∑

k=0

2−K (k)
≤ 2−n

and this bound completes the proof. �

It is also possible to characterize Solovay randomness in terms of complexity. Namely,
Solovay and strong Chaitin randomness coincide. The following proposition generalizes a
result by Tadaki [21] and Calude, Staiger and Terwijn [2].

Proposition 5. Given a premeasure ρ, a sequence A ∈ {0, 1}
ω is Solovay ρ-random if and

only if it is strongly Chaitin ρ-random.

Proof. Assume A is not strongly Chaitin ρ-random. Then there is a constant c such that for
infinitely many n, ρ(A �n) < 2c−K (A�n); without loss of generality c is a natural number.
Then the set W = {x : ρ(x) < 2c−K (x)

} is recursively enumerable since ρ is computable,
K is enumerable from above and thus 2c−K (x) is enumerable from below. Furthermore,
ρ(W ) <

∑
x∈W 2c−K (x) < 2c. So W is a Solovay ρ-test. By choice of c, W covers every

A. So A is not Solovay ρ-random.
The converse direction can easily be seen by using the Kraft-Chaitin Theorem (see for

instance Li and Vitányi’s book [6]). Assume A is covered by a Solovay ρ-test W . Then∑
x∈W ρ(x) is finite and one can consider {〈x, − log ρ(x)〉 : x ∈ W } as a Kraft-Chaitin

axiom set. Thus there is a constant c with K (x) < c − log ρ(x). Since A is covered by W ,
there are infinitely many n with K (A �n) < c − log ρ(A �n). �

4. A HIERARCHY OF RANDOMNESS TESTS

Since a Martin-Löf ρ-test (Vn) can be transformed into a Solovay ρ-test W covering all
the sets covered by (Vn) by letting

W =

⋃
n∈N

Vn,

one obtains that every Martin-Löf ρ-nullset is contained in a Solovay ρ-nullset. Thus every
Solovay ρ-random set is also Martin-Löf ρ-random.

Proposition 6. For every premeasure ρ, every Martin-Löf ρ-nullset is covered by a Solo-
vay ρ-test.
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In the case that ρ = λ, the converse direction of above proposition is also true. The next
result shows that this is not the case when ρ is an unbounded premeasure.

Theorem 1. For every unbounded premeasure ρ there exists a sequence A which is Solo-
vay ρ-null but not Martin-Löf ρ-null.

Proof. Assume ρ is an unbounded (p, q)-premeasure. Let F(x) = K (x)+ log ρ(x). Note
that for all x ∈ {0, 1}

∗ and i ∈ {0, 1}, (q − p)ρ(x) ≤ ρ(xi) ≤ pρ(x) and q − p > 0.
Thus there is a constant bounding the absolute value of the difference ρ(xi) − ρ(x) for all
x ∈ {0, 1}

∗ and i ∈ {0, 1}. The same applies to K and F . Using Lemma 4.3 below, there
is a constant c and a sequence A which satisfies for all n the following three properties:

• if F(A �cn) ≥ 0 then F(A �cn+c) ≤ F(A �cn) − 1;
• if F(A �cn) < 0 then F(A �cn+c) ≥ F(A �cn ) + 1.

It follows that the there is a constant c′ with −c′
≤ F(A �m) ≤ c′ for all m. So A is weakly

but not strongly Chaitin ρ-random. It follows from the results in the previous section that
A is Solovay ρ-null and Martin-Löf ρ-random. �

Lemma 1. Let ρ be an unbounded premeasure. There exists a constant c with the following
property: For all strings x there exist strings y, z of length c such that

K (xy) + log ρ(xy) ≥ K (x) + log ρ(x) + 1;

K (xz) + log ρ(xz) ≤ K (x) + log ρ(x) − 1.

Proof. Again assume ρ is an unbounded (p, q)-premeasure. We first outline an algorithm
which treats c as an input. The result is obtained by fixing c to a sufficiently large value.

Given x, c, the strings y, z ∈ {0, 1}
c are determined as follows. Order the 2c strings in

{0, 1}
c according to the size of ρ(xu), u ∈ {0, 1}

c, in descending order and let, for b ∈

{1, 2, . . . , 2c
}, g(x, c, b) be the b-th string in this ordering prefixed by x , so ρ(g(x, c, 1)) ≥

ρ(g(x, c, 2)) ≥ . . . ≥ ρ(g(x, c, 2c)). As ρ is recursive, one can take g to be a recursive
function as well. Note that

qcρ(x) ≤

∑
u∈{0,1}c

ρ(xu)

≤ ρ(g(x, c, 1)) +

∑
a∈{0,1,...,c−1}

2a
· ρ(g(x, c, 2a

+ 1))

and ρ(g(x, c, 1)) ≤ pcρ(x). Now choose a ∈ {0, 1, . . . , c − 1} such that the 2a
·

ρ(g(x, c, 2a
+1)) is maximal and choose y such that xy = g(x, c, b) for the b ∈ {1, 2, . . . , 2a

}

for which K (g(x, c, b)) is maximal. Furthermore, let z = 0c, that is, z consists of c zeroes.
Now, the following statements hold for all sufficiently large c, all x and the a, y, z chosen
for them as above.

• K (xy) ≥ K (x) + a − K (c) − K (a) − log(c) ≥ K (x) + a − 4 log(c) where c has
to be sufficiently large so that log(c) absorbs the constants involved;

• ρ(xy) ≥ qcρ(x)2−a
· c−2 where c is sufficiently large that qc

− pc
≥ qc/c;

• K (xy) + log ρ(xy) ≥ K (x) + log ρ(x) + log(q)c − 6 log(c) where log(q) > 0 as
ρ is unbounded;

• K (xz) ≤ K (x) + K (c) + log(c) ≤ K (x) + 3 log(c) as z can be computed from x
and c and log(c) absorbs the involved constants if c is sufficiently large;

• log ρ(xz) ≤ log ρ(x) + c log(p) where log(p) < 0;
• K (xz) + log ρ(xz) ≤ K (x) + log ρ(x) + c log(p) + 3 log(c).
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Now one can choose a constant c sufficiently large so that all of the above hold, that
log(q)c − 6 log(c) > 1, and that c log(p) + 3 log(c) < −1. With c thus chosen, one
can find for every x some y, z ∈ {0, 1}

c with the desired properties. �

For the case ρ(x) = 2−|x |s , the idea for Lemma 4.3 is implicit in [1] and [8]. For such ρ,
Miller [10] also has a proof of Theorem 4.2 along the lines of this paper.

Though not equivalent, Solovay ρ-tests and Martin-Löf ρ-tests induce the same notion
of effective dimension. They distinguish between sequences on a rather “fine” level of
complexity oscillations. For details on effective dimension see e.g. [11].

Proposition 7. Let ρ be a premeasure. If X ∈ {0, 1}
ω is covered by an effective Solovay

ρ-test, then X is Martin-Löf ρ′-null for any premeasure ρ′ such that limn ρ′(X �n)/ρ(X �n
) = 0.

Proof. Assume that C is an effective Solovay ρ-cover for X and let ρ′ be a premeasure
with limn ρ′(X �n)/ρ(X �n) = 0. Deleting a finite number of strings from C does not
change the covering properties of a Solovay test, so we may assume that

∑
w∈C ρ(w) ≤ 1.

Given n ≥ 0, we define a r.e. set Cn by enumerating only those elements of C for which

ρ′(w)

ρ(w)
≤ 2−n .

Then X is covered by Cn and it holds that∑
w∈Cn

ρ(w) =

∑
w∈Cn

ρ′(w)

ρ(w)
ρ(w) ≤ 2−n

∑
w∈Cn

ρ(w) ≤ 2−n .

Hence, (Cn) is a Martin-Löf ρ′-test for X . �

On the other hand, Solovay tests can always be covered by strong Martin-Löf tests.

Theorem 2. For every premeasure ρ, every Solovay ρ-nullset is covered by a strong
Martin-Löf ρ-test.

Proof. Let W be a Solovay ρ-test. Again, we may assume that ρ(W ) < 1. Assume further
that for A ∈ {0, 1}

ω there are infinitely many w ∈ W such that w @ A. We distinguish two
cases:

Case 1: It holds that

(4) (∀n)(∃x ∈ W )[x @ A ∧ ρ(W +
x ) ≥ ρ(x)2n].

Define
Vn = {x ∈ W : ρ(W +

x ) ≥ ρ(x)2n
}.

We claim that (Vn)n∈N is a strong Martin-Löf ρ-test that covers A. Obviously, A is covered
by each Vn , due to the assumption above. Furthermore, if V ⊆ Vn is prefix-free, then

2nρ(V ) = 2n
∑
x∈V

ρ(x) ≤

∑
x∈V

ρ(W +
x ) ≤

∑
w∈W

ρ(w) < 1,

so ρ(V ) < 2−n .
Case 2: We have

(5) (∃n)(∀x ∈ W )[x @ A ⇒ ρ(W +
x ) < ρ(x)2n].
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We can strengthen this to

(∃∞x ∈ W )[x @ A ∧ ρ(W +
x ) > rρ(x)]

and (∀∞x)[x @ A ⇒ ρ(W +
x ) < (r +

1
2 )ρ(x)],

where r is some rational number. By removing finitely many elements from W we can
even assume

(∀z @ A)[ρ(W +
x ) < (r +

1
2 )ρ(x)].

Now let x0, x1, . . . be an enumeration of W and construct inductively sets Tn ⊆ {0, 1}
?

starting with T0 = {x0}. If Q = Tn ∪ {xn+1} satisfies

(∀y ∈ Q)[ρ(Q+
y ) < (r +

1
2 )ρ(y)]

then let Tn+1 = Tn ∪ {xn} else let Tn+1 = Tn . It is easy to see that the resulting union
T =

⋃
Tn satisfies

(∀y ∈ T )[ρ(T +
y ) < (r +

1
2 )ρ(y)].

Furthermore, every prefix of A in W is also in T . To see this, assume that xn is a prefix of
A. If n = 0 then xn ∈ T anyway. If n > 0 then consider Q = Tn−1 ∪ {xn} and any y ∈ Q.
If y 6v xn then ρ(Q+

y ) = ρ((Q − {xn})+y ) and y does prevent xn from being added to T .
If y v xn then y @ A and ρ(Q+

y ) ≤ ρ(W +
y ) ≤ (r +

1
2 )ρ(y) and again y does prevent xn

from being enumerated into T . Thus xn ∈ Tn and xn ∈ T . So all prefixes of A in W are
also in T and T covers A. The set T is obviously enumerable.

From T one enumerates S = {x ∈ T : ρ(W +
x ) > rρ(x)}. The set S contains infinitely

many prefixes of A. Furthermore, for every x ∈ S, every prefix-free subset Q of S+
x and

every y ∈ Q, the following inequalities hold.

ρ(W +
y ) > rρ(y);

ρ(W +
x ) ≥ ρ(Q) +

∑
y∈Q

ρ(W +
y ) > (1 + r)ρ(Q);

ρ(W +
x ) ≤ (r +

1
2 )ρ(x);

ρ(Q) ≤
1+2r
2+2r ρ(x).

Now let inductively

Qm = {x ∈ S : ∀y ∈ S (y @ x ⇒ y ∈ ∪k<m Qk) }.

So Qm is the set of all x ∈ S such that the cardinality of {y ∈ S : y @ x} is exactly m.
Now ρ(Qm+1) ≤

2r+1
2r+2ρ(Qm) for all m. Now one can compute numbers m0, m1, m2, . . .

such that for all n, ( 2q+1
2q+2 )mn < 2−n and thus ρ(Qmn ) < 2−n . Now let

Vn = {x ∈ S : ∃y ∈ Qmn (y @ x)} = S − Q0 − Q1 − Q2 − . . . − Qmn .

The sets Vn are uniformly enumerable. Furthermore, if Q is a prefix-free subset of Vn , then
there is for every x ∈ Q some y ∈ Qmn with y @ x . Thus Q is the union of prefix free sets
Q+

y with y ∈ Qmn . By choice of S and Vn , ρ(Q+
y ) < ρ(y) and ρ(Q) < ρ(Qmn ) < 2−n .

This completes the proof. �

Corollary 2. For s ≥ 0 and ρs given as ρs(x) = 2−|x |s , every Solovay ρs-nullset is
covered by a strong Martin-Löf ρs-test.

For unbounded, length-invariant premeasures, strong Martin-Löf tests are strictly more
powerful then Solovay tests.
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Theorem 3. For any unbounded, length-invariant premeasure ρ there is a set A which is
covered by a strong Martin-Löf ρ-test but not by a Solovay ρ-test.

Proof. Let I0, I1, . . . be a recursive sequence of disjoint intervals such that

(∀i) (∃ j ∈ Ii ) (∀k) [|{x ∈ {0, 1}
j : K (x) ≤ k}| < 2k−2i ].

Using Lemma 4.3, we can construct a sequence A such that, up to a constant c,

(∀i) (∀ j ∈ Ii ) [K (A � j ) = − log ρ(A � j ) + i].

By construction A is Solovay ρ-random. Let

Wi = {x ∈ {0, 1}
max Ii+c : ∀y v x (K (y) ≤ − log ρ(y) + i + 2c)}.

Obviously, every Wi is finite and covers A. Furthermore, the Wi are uniformly enumerable.
We show how to modify (Wi ) to obtain a strong Martin-Löf ρ-test that covers A.

We initialize with Vi = ∅. Every time some w is enumerated into Wi , we check whether
there exists a v ∈ Vi such that v v w. If so, we let Vi unchanged. Otherwise we pick the
longest v v w such that for all prefix-free subsets Q ⊆ Vi ∪ {v} and every u v w it holds
that

ρ(Q+
u ) < ρ(u).

Enumerate v into Vi . It is clear that the Vi still cover A. It remains to show that for every
prefix-free subset Q of Vi , ρ(Q) ≤ 2−i .

Let j ∈ Ii+c be such that for all k,

|{x ∈ {0, 1}
j : K (x) ≤ k}| < 2k−2i .

Consider the cover U = {u ∈ {0, 1}
j : ∃w ∈ Wi (u v w)}. ρ is length-invariant, so let r

be the unique valle of all ρ(u), u ∈ {0, 1}
j . It follows by the choice of j that

ρ(U ) ≤ r2− log(r)+i+2c−2(i+c)
= 2−i .

We claim that for any prefix-free set Q ⊆ Vi , ρ(Q) ≤ ρ(U ). Assume this is not the
case for some prefix-free Q ⊆ Vi . Let g : Q → {1, . . . , n} and h : U → {1, . . . , n}

such that g(x) = h(u) if and only if x and u are compatible, i.e. x v u or u @ x . Since
ρ(Q) > ρ(U ), there must be an m ≤ n such that, for Qm = g−1({m}) and Um = h−1({m})

ρ(Qm) > ρ(Um).

Note that at least one of Qm, Um must contain at most one element. If Um = {u} and for all
x ∈ Qm , x A u, then ρ(u) < ρ(Qm) ≤ ρ(Q+

u ), so one of the elements of Qm could not
have been enumerated in the construction of Vi . If, on the other hand, Qm = {x} and for
all u ∈ Um , u A x , then this contradicts the choice of x as the longest string possible. �
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