Laws of Exponential and Logarithmic Functions#

Laws, Properties, and Derivatives#

Laws of Exponential and Logarithmic Functions

Let a and b be positive numbers and x and y be real numbers. Let m and n be positive numbers.

Exponential
  • Addition of Exponents Law

    bxby=bx+y
  • Difference of Exponents Law

    bxby=bxy
  • Exponentiation Law

    (bx)y=bxy
  • Product Distribution Law

    (ab)x=axbx
  • Fractional Distribution Law

    (ab)x=axbx
Logarithmic
  • Logarithmic Addition Law

    logb(mn)=logb(m)+logb(n)
  • Logarithmic Subtraction Law

    logb(mn)=logb(m)logb(n)
  • Logarithm of a Power

    logb(mn)=nlogb(m)
  • Logarithm of 1

    logb(1)=0  &  ln(1)=0
  • Logarithm of the Base

    logb(b)=1  &  ln(e)=1

Cancellation Properties of ex and ln(x)

  • For all x>0

    eln(x)=x
  • For all x

    ln(ex)=x

Derivatives of ex and ln(x)

  • Derivative of ex

    ddxex=ex
  • Derivative of ef(x)

    ddxef(x)=ef(x)f(x)
  • Derivative of ln(x)

    ddxln(x)=1x
  • Derivative of ln(f(x))

    ddxln(f(x))=1f(x)f(x)

Example 1#

Solve for unknown value in the exponent

Find all values of x such that 4xx2=116x.

Step 1:   Write both sides of the equation as a power of   4.

Since the left-hand side is already written as a power of 4, focus on the right-hand side.

116x=16x=(42)xsince 16=42=42xsince (bx)y=bxy

Therefore, the original equation can be rewritten in the following manner:

4xx2=42x.
Step 2:   Set the exponents equal to each other, and solve for   x.
xx2=2x3xx2=0move all variables to one sidex(3x)=0factorx=0,x=3folve for x by setting each factor equal to 0

Example 2#

Solve for unknown value in the exponent

Find all values of x such that:

22x402x+256=0.
Step 1:   Rewrite the equation in terms of   2x.
(2x)2402x+256=0.
Step 2:   Let   u=2x.
u240u+256=0.
Step 3:   Factor and solve for   u.
(u8)(u32)=0.
u=8     or     u=32.
Step 4:   Substitute   2x   back in for   u   and solve for   x.
2x=82x=32x=3x=5

Example 3#

Solve for unknown value in the exponent

Find all values of t such that 3601+9e2t=90.

Step 1:   Isolate   e2t   using the following steps.
360=90(1+9e2t)multiply both sides by the denominator4=1+9e2tdivide both sides by 903=9e2tsubtract 1 from both sides1/3=e2tdivide both sides by 9
Step 2:   Take the natural logarithm of both sides.
ln(13)=ln(e2t)=2tcancellation property ln(ex)=x
Step 3:   Solve for   t.
t=12ln(13)=12ln(3)since ln(1/3)=ln(31)=ln(3)

Example 4#

Expand using properties of logarithms

Expand the following expression:

ln((x+1)23e5xx).
Step 1:   Use the laws of logarithms to expand the given expression.
ln((x+1)23e5xx)=ln((x+1)23e5x)ln(x)since ln(m/n)=ln(m)ln(n)=ln((x+1)23)+ln(e5x)ln(x)since ln(mn)=ln(m)+ln(n)=23ln(x+1)+5xln(e)ln(x)sine ln(mn)=nln(m)=23ln(x+1)+5xln(x)since ln(e)=1.

Example 5#

Equation of the tangent line

Find the tangent line to y=e27xx9 at the point (1,e27).

Step 1:   Recall the point-slope equation of a line.

Point-Slope:

y=m(xa)+b,

where m is the slope of the line and (a,b) is a point on the line.

Step 2:   Compute the slope of the line by using the derivative.

Recall ddxef(x)=ef(x)f(x).

y=e27x27x9e27x9x8x18.

Since the given point is (1,e27), plug in x=1 into the derivative to find the slope of the tangent line.

m=y(1)=e2727e2791=18e27.
Step 3:   Write down the equation of the tangent line.

Since we were given the point (1,e27) (i.e., a=1 and b=e27) and we found the slope (m=18e27), we can now write down the equation of the tangent line using the point-slope equation of a line.

y=18e27(x1)+e27.

Example 6#

Marginal revenue function

Suppose the unit selling price p(x) and the quantity supplied x of a certain product is given by

p(x)=x3e5x+12.

Find the marginal revenue function R(x).

Step 1:   Find the revenue function,   R(x), using the formula   R(x)=xp(x).
R(x)=x4e5x+12x.
Step 2:   Compute the derivative of   R(x).

Recall ddxef(x)=ef(x)f(x).

R(x)=4x3(e5x)+x4(e5x5)+12using product rule=x3e5x(4+5x)+12.

Example 7#

Derivative of a logarithmic function

Compute the derivative of f(x)=ln(6x+15x).

Step 1:   Expand   f(x)   using laws of logarithms.
ln(6x+15x)=ln(6x+1)ln(5x)since ln(m/n)=ln(m)ln(n)=ln((6x+1)1/2)[ln(5)+ln(x)]since ln(mn)=ln(m)+ln(n)=12ln(6x+1)ln(5)ln(x)since ln(mn)=nln(m).
Step 2:   Compute the derivative.

Recall ddxln(f(x))=1f(x)f(x).

ddx(12ln(6x+1)ln(5)ln(x))=1216x+1601x=36x+11x.

Example 8#

Implicit differentiation

Let ln(xy)+y7=x3+2x. Find dydx.

Step 1:   Differentiate both sides using implicit differentiation.
1xy(y+xy)+7y6y=3x2+2.
Step 2:   Multiply both sides by   xy.
xy[1xy(y+xy)+7y6y]=xy1xy(y+xy)+xy7y6y=(y+xy)+7xy7yxy[3x2+2]=3x3y+2xy.

Therefore,

y+xy+7xy7y=3x3y+2xy.
Step 3:   Rearrange terms.

Rearrange terms so that any term with a factor of   y   is on the left-hand side of the equation and all other terms are on the right-hand side.

xy+7xy7y=3x3y+2xyy.
Step 4:   Factor out   y   on the left-hand side.
y(x+7xy7)=3x3y+2xyy.
Step 5:   Solve for   y.
y=3x3y+2xyyx+7xy7.