Properties of Finite Limits#
Properties
Le \(c\) be any real number and suppose \(\displaystyle \lim_{x\to a} f(x) = L\) and \(\displaystyle \lim_{x\to a} g(x) = M\), where both \(L\) and \(M\) are finite values.
\[\begin{align*}
&\text{Limit of a Constant} && \lim_{x\to a} c = c \\ \\
&\text{Sum & Difference Properties} && \lim_{x\to a} [f(x) \pm g(x)] = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)=L \pm M \\ \\
&\text{Constant Multiple Property} && \lim_{x\to a} cf(x) = c\lim_{x\to a} f(x) = cL\\ \\
&\text{Generalized Product Property} && \lim_{x\to a} [f(x)g(x)] = [\lim_{x\to a} f(x)][\lim_{x\to a} g(x)]=LM \\ \\
&\text{Quotient Property} && \lim_{x\to a} \dfrac{f(x)}{g(x)} = \dfrac{\lim\limits_{x\to a} f(x)}{\lim\limits_{x\to a} g(x)}=\dfrac{L}{M} ~~~~ \text {if $M\neq 0$} \\ \\
&\text{Power Property} && \lim_{x\to a} [f(x)]^c = \left[\lim_{x\to a} f(x)\right]^c = L^c ~~~~ \text {if $L^c$ is defined}
\end{align*}\]
The Limit of a Polynomial or Rational Function
If \(f(x)\) is a polynomial or rational function and \(a\) is in the domain of \(f(x)\), then
\[\lim_{x\to a} f(x) = f(a)\]