Basic Rules of Integration#

The Rules#

Integral of a Costant

For any real number k,

k dx=kx+C

The Power Rule

For any real number n1,

xn dx=xn+1n+1+C

The Constant Multiple Rule

For any real number k,

kf(x) dx=kf(x) dx

The Sum Rule

f(x)±g(x) dx=f(x) dx±g(x) dx

Integral of ex

For any real number a0,

ex dx=ex+C     and     eax dx=eaxa+C

Integral of 1/x

1x dx=ln|x|+C

The Substitution Rule

If u=g(x) and du=g(x) dx then

f(g(x))g(x) dx=f(u) du

Example 1#

Integral of a constant

Compute 13 dz.

Step 1:   Notice the differential dz.

This indicates that we are looking for a function of z, f(z), such that f(z)=13.

Step 2:   Recall the formula for the integral of a constant.
k dx=kx+C
Step 3:   Apply the rule with k=13.

Therefore,

13 dz=13z+C

In other words, every function of z with derivative equal to 13 can be written in the form 13z+C for some constant C.

Check Our Work.

We can verify our answer by showing 13 is the derivative of 13z.

ddz13z=13

Example 2#

Integral of a power function

Compute x7 dx.

Step 1:   Recall the power rule.

For any real number n1,

xn dx=xn+1n+1+C
Step 2:   Apply the power rule with n=7.
x7dx=x7+17+1+C=x88+C
Check Our Work.

We can verify our answer by showing x7 is the derivative of x88.

ddxx88=ddx18x8=18ddxx8=188x7=x7

Example 3#

Integral of a power function with rational exponent

Compute 1y dy.

Step 1:   Rewrite the integrand in the appropriate form to apply the power rule.
1y dy=y1/2 dy
Step 2:   Apply the power rule with n=1/2.
y1/2 dy=y1/2+11/2+1+C=y1/21/2+C=2y+C
Check Our Work.

We can verify our answer by showing 1y is the derivative of 2y.

ddy2y=2ddyy1/2=212y1/2=1y

Example 4#

Integral of a constant multiple of a power function

Compute 4x7/3 dx.

Step 1:   Recall the constant multiple rule.

For any real number k,

kf(x) dx=kf(x) dx
Step 2:   Apply the constant multiple rule with k=4.
4x7/3 dx=4x7/3 dx=4(x7/3+17/3+1)+Cpower rule with n=7/3=4(x10/310/3)+Csimplify=4310x10/3+C=65x10/3+C
Check Our Work.

We can verify our answer by showing 4x7/3 is the derivative of 65x10/3.

ddx65x10/3=65ddxx10/3=65103x7/3=4x7/3

Example 5#

Integral of a sum of power functions

Compute 5t310t6+4t dt.

Step 1:   Recall the sum and difference rule.
f(x)±g(x) dx=f(x) dx±g(x) dx
Step 2:   Apply the sum, difference and constant multiple rules.
5t310t6+4t dt=5t3 dt10t6 dt+4t dtsum rule=5t3 dt101t6 dt+4t dtconstant multiple rule=5t3 dt10t6 dt+4t1/2 dt
Step 3:   Integrate each term and then simplify.
5t3 dt10t6 dt+4t1/2 dt=5t4410t55+4t3/23/2+Cpower rule=54t4+2t5+83t3/2+Csimplify
Check Our Work.

We can verify our answer by showing 5t310t6+4t is the derivative of 54t4+2t5+83t3/2.

ddt(54t4+2t5+83t3/2)=544t3+2(5)t6+8332t1/2=5t310t6+4t

Example 6#

Integral of a polynomial divided by a power function

Compute 4x915x4+7x3x4 dx.

Step 1:   Rewrite the integrand as a sum.
4x915x4+7x3x4=4x9x415x4x4+7x3x4=4x515+7x
Step 2:   Apply the sum and constant multiple rules.
4x915x4+7x3x4 dx=4x515+7x dx=4x5 dx15 dx+7x dxsum rule=4x5 dx15 dx+71x dxconstant multiple rule
Step 3:   Integrate each term and then simplify.
4x5 dx15 dx+71x dx=4x6615x+7ln|x|+Cintegrate each term=2x6315x+7ln|x|+Csimplify

Example 7#

Integral of an exponential function

Compute e2x/5 dx.

Step 1:   Recall the formula for the integral of eax for a0.
eax dx=eaxa+C
Step 2:   Apply the formula for the integral of eax with a=2/5.
e2x/5 dx=e2x/52/5+C=52e2x/5+C

Example 8#

Integral of a sum of functions

Compute 3e2x+8x+4x3 dx.

Step 1:   Apply the sum and constant multiple rules.
3e2x+8x+4x3 dx=3e2x dx+8x dx+4x3 dxsum rule=3e2x dx+81x dx+4x3 dxconstant multiple rule
Step 2:   Integrate each term and then simplify.
=3e2x2+81x dx+4x3dxintegral of eax=3e2x2+8ln|x|+4x3dxintegral of 1/x=3e2x2+8ln|x|+4x22+Cpower rule=32e2x+8ln|x|2x2+Csimplify

Example 9#

Integral of a product of functions

Compute (e3x+1)(e3x1) dx.

Step 1:   Rewrite the integrand as a sum.
(e3x+1)(e3x1)=e3xe3x+e3xe3x1FOIL=e3x3x+e3xe3x1since eaeb=ea+b=e0+e3xe3x1=1+e3xe3x1since e0=1=e3xe3xsimplify
Step 2:   Apply the sum rule and then integrate each term.
(e3x+1)(e3x1) dx=e3xe3x dx=e3x dxe3x dx=13e3x13e3x+Cintegral of eax=13(e3x+e3x)+Csimplify