Marginal Analysis#

Marginal Cost & Marginal Average Cost Functions#

Definition

If \(C(x)\) denotes the total cost function, then \(C'(x)\) denotes the marginal cost function, which approximates the extra cost incurred in producing one additional unit

\[C'(x) \approx C(x+1) - C(x)\]

and \(\overline{C}'(x)\) denotes the marginal average cost function.

Marginal Revenue & Marginal Average Revenue Functions#

Definition

If \(R(x)\) denotes the total revenue function, then \(R'(x)\) denotes the marginal revenue function, which approximates the revenue realized from the sale of one additional unit

\[R'(x) \approx R(x+1) - R(x)\]

and \(\overline{R}'(x)\) denotes the marginal average revenue function.

Marginal Profit & Marginal Average Profit Functions#

Definition

If \(P(x)\) denotes the total profit function, then \(P'(x)\) denotes the marginal profit function, which approximates the profit generated from the production and sale of one additional unit

\[P'(x) \approx P(x+1) - P(x)\]

and \(\overline{P}'(x)\) denotes the marginal average profit function.

Marginal Analysis Notation#

Name

Function

Average

Marginal Function

Marginal Average

Cost

\(C(x)\)

\(\overline{C}(x) = \frac{C(x)}{x}\)

\(C'(x)\)

\( \overline{C}'(x) = \frac{d}{dx}\overline{C}(x)\)

Revenue

\(R(x)\)

\(\overline{R}(x) = \frac{R(x)}{x}\)

\(R'(x)\)

\( \overline{R}'(x) = \frac{d}{dx}\overline{R}(x)\)

Profit

\(P(x)\)

\(\overline{P}(x) = \frac{P(x)}{x}\)

\(P'(x)\)

\(\overline{P}'(x) = \frac{d}{dx}\overline{P}(x)\)

Example 1#

The daily demand for the new PBox5 Game Dr. Mathematica-Exam Day of Reckoning is given by

\[p(x) = \frac{125}{x+2} - \frac{1}{2}x\]

where \(x\) is the number of video games sold each day and \(p\) is in dollars. Using the marginal revenue function, \(R'(x)\), approximate the marginal revenue when 3 video games are sold each day and interpret the result.

Step 1:   Compute the total revenue function,   \(R(x)\).
\[\begin{align*} R(x) &= x\cdot p(x) \\ &= x\left(\frac{125}{x+2} - \frac{1}{2}x \right)\\ &= \frac{125x}{x+2}-\frac{1}{2}x^2 \end{align*}\]
Step 2:   Compute the marginal revenue function,   \(R'(x)\).
\[\begin{align*} R'(x) &= \frac{d}{dx}R(x)\\ &= \frac{d}{dx}\left( \frac{125x}{x+2}-\frac{1}{2}x^2 \right) \\ &= \frac{125(x+2) -125x}{(x+2)^2} - \frac{1}{2}\cdot 2x \\ &= \frac{125x+250 - 125x}{(x+2)^2} - x \\ &= \frac{250}{(x+2)^2} - x \\ \end{align*}\]
Step 3:   Plug in   \(x=3\)   into the marginal revenue function.
\[\begin{align*} R'(3) &= \frac{250}{(3+2)^2} - 3 \\ &= \frac{250}{5^2} - 3 \\ %&= \frac{250}{25} - 3 \\ &= 10 - 3\\ &= 7 \end{align*}\]

Therefore, the total daily revenue would increase by approximately $7 if sales increased from 3 to 4 units each day.

Example 2#

If the demand function for math self-help videos is given by

\[p(x) = 35 - 0.1x\]

and the total cost function to manufacture the videos is given by

\[C(x) = 3x + 21\]

Evaluate the marginal profit function at \(x=20\) and interpret the result.

Step 1:   Compute the total revenue function,   \(R(x)\).
\[\begin{align*} R(x) &= x\cdot p(x)\\ &= x(35 - 0.1x)\\ &= 35x-0.1x^2 \end{align*}\]
Step 2:   Compute the total profit function,   \(P(x)\).
\[\begin{align*} P(x) &= R(x) - C(x)\\ &= (35x-0.1x^2)-(3x+21)\\ &= 35x-0.1x^2-3x-21\\ &=-0.1x^2 +32x -21 \end{align*}\]
Step 3:   Compute the marginal profit function,   \(P'(x)\).
\[\begin{align*} P'(x) &= \frac{d}{dx}P(x) \\ &= \frac{d}{dx}(-0.1x^2 +32x -21) \\ &= -0.1(2x) + 32 \\ &= -0.2x+32 \end{align*}\]
Step 4:   Plug in   \(x=20\)   into the marginal profit function.
\[\begin{align*} P'(20) &= -0.2(20)+32\\ &= -\frac{2}{10}(20)+32\\ &=-4+32\\ &=28 \end{align*}\]

Therefore, the total profit will increase by approximately $28 when the 21st video is produced and sold.

Example 3#

The daily cost (in dollars) of producing computer screens is given by

\[C(x)=9x^3-30x^2+90x+900\]

where \(x\) denotes the number of thousands of screens produced each day. Calculate the marginal average cost function when 3000 screens are produced each day and interpret the result.

Step 1:   Compute and simplify the average cost function,   \(\overline{C}(x)\).
\[\begin{align*} \overline{C}(x) &= \frac{9x^3-30x^2+90x+900}{x} && \hbox{since $\overline{C}(x) = C(x)/x$}\\ \\ &= \frac{9x^3}{x} -\frac{30x^2}{x}+\frac{90x}{x}+\frac{900}{x}&& \text{separate the terms to make differentiation easier}\\ \\ &=9x^2 -30x+90+900x^{-1} && \text{simplify}\\ \end{align*}\]
Step 2:   Compute the marginal average cost function,   \(\overline{C}'(x)\).
\[\begin{align*} \overline{C}'(x) &= \frac{d}{dx} \overline{C}(x)\\ &= \frac{d}{dx}\left(9x^2 -30x+90+900x^{-1}\right)\\ &= 9(2x)-30+ 0 + (-1)900x^{-2}\\ &=18x-30-\frac{900}{x^2} \end{align*}\]
Step 3:   Plug in   \(x=3\).

We plug in \(x=3\), since \(x\) denotes the number of thousands of screens produced each day.

\[\begin{align*} \overline{C}'(3) &=18(3)-30-\frac{900}{3^2} \\ &=54-30-100 \\ &= -76 \end{align*}\]

Therefore, the average cost of producing a thousand screens will decrease by approximately $76 if the level of production is increased from 3000 to 4000 screens.