Examples: Computing Limits Algebraically#

Example: Constant Function#

If \(f(x) = 2\), find \(\lim\limits_{x\to 1^{-}}f(x)\).

Example: Rational Function (1)#

Evaluate

\[\lim\limits_{x\to -1} \dfrac{x^3 +4x^2-x-3}{2x^2+1}.\]

Example: Rational Function (2)#

Evaluate

\[\lim\limits_{x\to 2} \dfrac{x^2 +4x-1}{x-2}.\]

Example: Piecewise Polynomial Function#

Evaluate \(\displaystyle\lim_{x\to 6} h(x)\), where

\[\begin{equation*} h(x)= \begin{cases} x^2-4x-12 & \hbox{if } x<6 \\ 8 & \hbox{if } x=6 \\ x^2-5x-6 & \hbox{if } x>6 \\ \end{cases} \end{equation*}\]
Step 1:   Find the limit from the left.

In this case, since we are approaching 6 from the left, we can assume that \(x<6\), and therefore \(h(x) = x^2-4x-12\).

\[\begin{align*} \lim_{x\to 6^{-}} h(x) &= \lim_{x\to 6^-} x^2-4x-12\\ \\ &= 6^2-4(6)-12 && \text{plug in $x=6$ (Property 7)}\\ \\ &= 36-24-12 && \text{simplify}\\ \\ &= 0 \end{align*}\]
Step 2:   Find the limit from the right.

In this case, since we are approaching 6 from the right, we can assume that \(x>6\), and therefore \(h(x) = x^2-5x-6\).

\[\begin{align*} \lim_{x\to 6^{+}} h(x) &= \lim_{x\to 6^+} x^2-5x-6\\ \\ &= 6^2-5(6)-6 && \text{plug in $x=6$ (Property 7)}\\ \\ &= 36-30-6 && \text{simplify}\\ \\ &= 0 \end{align*}\]
Step 3:   Check to see if the two limits are equal.

Since \(\displaystyle \lim_{x\to 6^-} h(x) = 0\) and \(\displaystyle \lim_{x\to 6^+} h(x) = 0\), we conclude that the limit exists and

\[\lim_{x\to 6} h(x) = 0.\]

Warning

Keep in mind that just because \(\displaystyle\lim_{x\to 6} h(x) \neq h(6) = 8\), this does not mean that the limit does not exist.